Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 299: 113678, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523543

RESUMO

This study assessed the anaerobic digestion (AD) of wastes deriving from cosmetics production: sludge from onsite wastewater treatment plant (sWWTP), residues of shampoo/conditioner (RSC) and sludge from mascara production (MS), considered as single substrates and as mixture according to the produced amounts (54 %-wt sWWTP, 31 %-wt RSC, 13 %-wt MS, plus 2 %-wt food waste from the canteen, FW). Total COD (CODT) was 624-1436 g O2/kg VS, while soluble COD was 5-23 %-wt of CODT. AD tests at 35 °C achieved the following biogas yields: 0.10 Nm3/kgvs (70 %-v/v methane) for sWWTP; 0.07 Nm3/kgvs (62 %-v/v methane) for RSC; 0.04 Nm3/kgvs (67 %-v/v methane) for MS. The mixed substrates underwent physico-chemical pre-treatments (thermo-alkaline, TA: 120 min at 50 °C; thermo-alkaline-sonication, TAS: 15 min at 40 kHz and 80 °C, both based on the addition of 0.08 g NaOH per each g of total solid in the substrate), reaching 64-66% disintegration rate, and AD tests (5 %-wt dry substance) at 35 and 52 °C. Biogas yields were (for TA and TAS respectively): 0.22 and 0.20 Nm3/kgVS (62-70% methane); 0.21 and 0.19 Nm3/kgVS (66-66% methane) at 52 °C. At both temperatures, methane yields considerably improved (+71-100%), compared to mixed untreated substrates, and 5-8 %-wt total solids reductions were observed. A technical-economic scale-up assessment completed the research. The energy analysis highlighted the crucial role of TA pre-treatment in achieving the process energetic sustainability. The economic analysis showed that the AD of the considered cosmetic waste could be sustainable anyway, thanks to the savings related to the disposal of the digestate compared to current waste management costs.


Assuntos
Cosméticos , Eliminação de Resíduos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Estudos de Viabilidade , Alimentos , Resíduos Industriais/análise , Metano , Esgotos
2.
J Environ Manage ; 300: 113646, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509128

RESUMO

According to the European Research and Innovation Policy Agenda, nature-based solutions (NBSs) are key technologies to improve the sustainability of urban areas. Among NBSs, green walls have been recently studied for several applications, among the others the treatment of lowly polluted wastewater flows as greywater (GW, e.g. domestic wastewater excluding toilet flushes). This work is aimed at the evaluation of the influence of four additives (compost, biochar, granular activated carbon, polyacrylate) mixed with a base filter medium made of coconut fibre and perlite, on the performances of a green wall fed in batch mode with synthetic GW. The green wall was operated with a high hydraulic loading rate of GW (740.8 L/m2/day) in open-air winter conditions (3.5-15 °C measured for GW) between January and April. The performances of the green wall have been assessed though the monitoring every 1-2 weeks of physicochemical and biological parameters (pH, electric conductivity, total suspended solids, dissolved oxygen, BOD5 and COD, nitrogen and phosporus compounds, chlorides and sulphates, anionic surfactants and E. coli). Removal performances were excellent for BOD5 (>95%) and E.coli (>98%) for all additives; compared to the base medium, biochar was the best performing additive over the highest number of parameters, achieving removals equal to 51% for COD, 47% for TKN and nitric nitrogen and 71% for anionic surfactants. Compost also achieved high removal performances, but the frequent clogging events occurred during the monitoring period do not make its use recommendable. Granular activated carbon and the combination of biochar and polyacrylate performed better than the base medium, but only about the removal of nitric nitrogen. These results demonstrated that, in the considered experimental boundaries, biochar could improve the overall treatment performances of a green wall fed by GW and operated in challenging conditions.


Assuntos
Escherichia coli , Eliminação de Resíduos Líquidos , Nitrogênio/análise , Águas Residuárias
3.
Bioresour Technol ; 340: 125664, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34358988

RESUMO

This work analysed the effects of Biochar (BC) addition to the Anaerobic digestion (AD) of wastewater Mixed sludge (MS) in semi-continuous mode. A 3 L digester was operated at 37 °C for 100 days, feeding MS collected every three weeks in the same wastewater treatment plant, and 10 g L-1 of BC. The average performance of MS digestion (biogas 188 NmL d-1, 68% methane) improved in presence of BC (biogas 244 NmL d-1, 69% methane). According to the results of the multiple linear regression analysis performed on the experimental data, the 79% variation of the soluble COD in the MS was the driving factor for the 38% increase of biogas and methane yields. In conclusion, in the considered experimental conditions, the variability of the substrate's composition was the key factor driving the performances of the AD of MS, independently of the addition of BC.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Carvão Vegetal , Metano , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA