Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 473(19): 3205-19, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27486258

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated by the phosphorylation of tyrosine 705 in response to many cytokines and growth factors. Recently, the roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in the maintenance of heterochromatin stability. It has been reported that U-STAT3 dimerizes, shuttles between the cytoplasm and nucleus, and binds to DNA, thereby driving genes transcription. Although many reports describe the active role of U-STAT3 in oncogenesis in addition to phosphorylated STAT3, the U-STAT3 functional pathway remains elusive.In this report, we describe the molecular mechanism of U-STAT3 dimerization, and we identify the presence of two intermolecular disulfide bridges between Cys367 and Cys542 and Cys418 and Cys426, respectively. Recently, we reported that the same cysteines contribute to the redox regulation of STAT3 signaling pathway both in vitro and in vivo The presence of these disulfides is here demonstrated to largely contribute to the structure and the stability of U-STAT3 dimer as the dimeric form rapidly dissociates upon reduction in the S-S bonds. In particular, the Cys367-Cys542 disulfide bridge is shown to be critical for U-STAT3 DNA-binding activity. Mutation of the two Cys residues completely abolishes the DNA-binding capability of U-STAT3. Spectroscopic investigations confirm that the noncovalent interactions are sufficient for proper folding and dimer formation, but that the interchain disulfide bonds are crucial to preserve the functional dimer. Finally, we propose a reaction scheme of U-STAT3 dimerization with a first common step followed by stabilization through the formation of interchain disulfide bonds.


Assuntos
Dissulfetos/metabolismo , Fator de Transcrição STAT3/metabolismo , Cromatografia em Gel , Dimerização , Dissulfetos/química , Espectrometria de Massas , Fosforilação , Conformação Proteica , Fator de Transcrição STAT3/química , Ressonância de Plasmônio de Superfície , Tirosina/metabolismo
2.
ACS Chem Biol ; 9(8): 1885-93, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24941337

RESUMO

STAT3 is a latent transcription factor that promotes cell survival and proliferation and is often constitutively active in cancers. Although many reports provide evidence that STAT3 is a direct target of oxidative stress, its redox regulation is poorly understood. Under oxidative conditions STAT3 activity can be modulated by S-glutathionylation, a reversible redox modification of cysteine residues. This suggests the possible cross-talk between phosphorylation and glutathionylation and points out that STAT3 is susceptible to redox regulation. Recently, we reported that decreasing the GSH content in different cell lines induces inhibition of STAT3 activity through the reversible oxidation of thiol groups. In the present work, we demonstrate that GSH/diamide treatment induces S-glutathionylation of STAT3 in the recombinant purified form. This effect was completely reversed by treatment with the reducing agent dithiothreitol, indicating that S-glutathionylation of STAT3 was related to formation of protein-mixed disulfides. Moreover, addition of the bulky negatively charged GSH moiety impairs JAK2-mediated STAT3 phosphorylation, very likely interfering with tyrosine accessibility and thus affecting protein structure and function. Mass mapping analysis identifies two glutathionylated cysteine residues, Cys328 and Cys542, within the DNA-binding domain and the linker domain, respectively. Site direct mutagenesis and in vitro kinase assay confirm the importance of both cysteine residues in the complex redox regulatory mechanism of STAT3. Cells expressing mutant were resistant in this regard. The data presented herein confirmed the occurrence of a redox-dependent regulation of STAT3, identified the more redox-sensitive cysteines within STAT3 structure, and may have important implications for development of new drugs.


Assuntos
Cisteína/metabolismo , Glutationa/metabolismo , Fator de Transcrição STAT3/metabolismo , Células HeLa , Humanos , Oxirredução , Fosforilação , Fator de Transcrição STAT3/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Free Radic Biol Med ; 65: 1322-1330, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24095958

RESUMO

STAT3 is a transcription factor constitutively activated in a variety of cancers that has a critical role in the inhibition of apoptosis and induction of chemoresistance. Inhibition of the STAT3 signaling pathway suppresses cell survival signals and leads to apoptosis in cancer cells, suggesting that direct inhibition of STAT3 function is a viable therapeutic approach. Herein, we identify the naturally occurring sesquiterpene lactone cynaropicrin as a potent inhibitor of both IL-6-inducible and constitutive STAT3 activation (IC50=12 µM). Cynaropicrin, which contains an α-ß-unsaturated carbonyl moiety and acts as potent Michael reaction acceptor, induces a rapid drop in intracellular glutathione (GSH) concentration, thereby triggering S-glutathionylation of STAT3. Furthermore, glutathione ethylene ester, the cell permeable form of GSH, reverts the inhibitory action of cynaropicrin on STAT3 tyrosine phosphorylation. These findings suggest that this sesquiterpene lactone is able to induce redox-dependent post-translational modification of cysteine residues of STAT3 protein to regulate its function. STAT3 inhibition led to the suppression of two anti-apoptotic genes, Bcl-2 and survivin, in DU145 cells that constitutively express active STAT3. This event may be responsible for the decline in cell viability after cynaropicrin treatment. As revealed by PI/annexin-V staining, PARP cleavage, and DNA ladder formation, cynaropicrin cytotoxicity is mediated by apoptosis. Finally, cynaropicrin displayed a slight to strong synergism with two well-established chemotherapeutic drugs, cisplatin and docetaxel. Taken together our studies suggest that cynaropicrin suppresses the STAT3 pathway, leading to the down-regulation of STAT3-dependent gene expression and chemosensitization of tumour cells to chemotherapy.


Assuntos
Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/farmacologia , Lactonas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Sesquiterpenos/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Glutationa/análogos & derivados , Glutationa/análise , Glutationa/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Estresse Oxidativo , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/química , Transdução de Sinais , Survivina , Taxoides/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA