Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 630(8018): 912-919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867041

RESUMO

The ancient city of Chichén Itzá in Yucatán, Mexico, was one of the largest and most influential Maya settlements during the Late and Terminal Classic periods (AD 600-1000) and it remains one of the most intensively studied archaeological sites in Mesoamerica1-4. However, many questions about the social and cultural use of its ceremonial spaces, as well as its population's genetic ties to other Mesoamerican groups, remain unanswered2. Here we present genome-wide data obtained from 64 subadult individuals dating to around AD 500-900 that were found in a subterranean mass burial near the Sacred Cenote (sinkhole) in the ceremonial centre of Chichén Itzá. Genetic analyses showed that all analysed individuals were male and several individuals were closely related, including two pairs of monozygotic twins. Twins feature prominently in Mayan and broader Mesoamerican mythology, where they embody qualities of duality among deities and heroes5, but until now they had not been identified in ancient Mayan mortuary contexts. Genetic comparison to present-day people in the region shows genetic continuity with the ancient inhabitants of Chichén Itzá, except at certain genetic loci related to human immunity, including the human leukocyte antigen complex, suggesting signals of adaptation due to infectious diseases introduced to the region during the colonial period.


Assuntos
Comportamento Ritualístico , DNA Antigo , Genoma Humano , Humanos , México , Genoma Humano/genética , Masculino , DNA Antigo/análise , História Antiga , Feminino , Sepultamento/história , Arqueologia , Gêmeos/genética , História Medieval
2.
Nature ; 620(7973): 358-365, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468624

RESUMO

Archaeogenetic studies have described two main genetic turnover events in prehistoric western Eurasia: one associated with the spread of farming and a sedentary lifestyle starting around 7000-6000 BC (refs. 1-3) and a second with the expansion of pastoralist groups from the Eurasian steppes starting around 3300 BC (refs. 4,5). The period between these events saw new economies emerging on the basis of key innovations, including metallurgy, wheel and wagon and horse domestication6-9. However, what happened between the demise of the Copper Age settlements around 4250 BC and the expansion of pastoralists remains poorly understood. To address this question, we analysed genome-wide data from 135 ancient individuals from the contact zone between southeastern Europe and the northwestern Black Sea region spanning this critical time period. While we observe genetic continuity between Neolithic and Copper Age groups from major sites in the same region, from around 4500 BC on, groups from the northwestern Black Sea region carried varying amounts of mixed ancestries derived from Copper Age groups and those from the forest/steppe zones, indicating genetic and cultural contact over a period of around 1,000 years earlier than anticipated. We propose that the transfer of critical innovations between farmers and transitional foragers/herders from different ecogeographic zones during this early contact was integral to the formation, rise and expansion of pastoralist groups around 3300 BC.


Assuntos
Agricultura , Civilização , Pradaria , Animais , Humanos , Agricultura/economia , Agricultura/história , Ásia , Civilização/história , Domesticação , Europa (Continente) , Fazendeiros/história , História Antiga , Cavalos , Comportamento Sedentário/história , Invenções/economia , Invenções/história
3.
Nature ; 620(7974): 600-606, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495691

RESUMO

Social anthropology and ethnographic studies have described kinship systems and networks of contact and exchange in extant populations1-4. However, for prehistoric societies, these systems can be studied only indirectly from biological and cultural remains. Stable isotope data, sex and age at death can provide insights into the demographic structure of a burial community and identify local versus non-local childhood signatures, archaeogenetic data can reconstruct the biological relationships between individuals, which enables the reconstruction of pedigrees, and combined evidence informs on kinship practices and residence patterns in prehistoric societies. Here we report ancient DNA, strontium isotope and contextual data from more than 100 individuals from the site Gurgy 'les Noisats' (France), dated to the western European Neolithic around 4850-4500 BC. We find that this burial community was genetically connected by two main pedigrees, spanning seven generations, that were patrilocal and patrilineal, with evidence for female exogamy and exchange with genetically close neighbouring groups. The microdemographic structure of individuals linked and unlinked to the pedigrees reveals additional information about the social structure, living conditions and site occupation. The absence of half-siblings and the high number of adult full siblings suggest that there were stable health conditions and a supportive social network, facilitating high fertility and low mortality5. Age-structure differences and strontium isotope results by generation indicate that the site was used for just a few decades, providing new insights into shifting sedentary farming practices during the European Neolithic.


Assuntos
Antropologia Cultural , Linhagem , Meio Social , Adulto , Criança , Feminino , Humanos , Masculino , Agricultura/história , Sepultamento/história , Pai/história , Fertilidade , França , História Antiga , Mortalidade/história , Irmãos , Apoio Social/história , Isótopos de Estrôncio/análise , Mães/história
4.
Mol Biol Evol ; 39(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35578825

RESUMO

Human expansion in the course of the Neolithic transition in western Eurasia has been one of the major topics in ancient DNA research in the last 10 years. Multiple studies have shown that the spread of agriculture and animal husbandry from the Near East across Europe was accompanied by large-scale human expansions. Moreover, changes in subsistence and migration associated with the Neolithic transition have been hypothesized to involve genetic adaptation. Here, we present high quality genome-wide data from the Linear Pottery Culture site Derenburg-Meerenstieg II (DER) (N = 32 individuals) in Central Germany. Population genetic analyses show that the DER individuals carried predominantly Anatolian Neolithic-like ancestry and a very limited degree of local hunter-gatherer admixture, similar to other early European farmers. Increasing the Linear Pottery culture cohort size to ∼100 individuals allowed us to perform various frequency- and haplotype-based analyses to investigate signatures of selection associated with changes following the adoption of the Neolithic lifestyle. In addition, we developed a new method called Admixture-informed Maximum-likelihood Estimation for Selection Scans that allowed us test for selection signatures in an admixture-aware fashion. Focusing on the intersection of results from these selection scans, we identified various loci associated with immune function (JAK1, HLA-DQB1) and metabolism (LMF1, LEPR, SORBS1), as well as skin color (SLC24A5, CD82) and folate synthesis (MTHFR, NBPF3). Our findings shed light on the evolutionary pressures, such as infectious disease and changing diet, that were faced by the early farmers of Western Eurasia.


Assuntos
Fazendeiros , Migração Humana , Agricultura , DNA Antigo , DNA Mitocondrial/genética , Europa (Continente) , Genética Populacional , História Antiga , Humanos
5.
Am J Phys Anthropol ; 161(1): 84-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27218411

RESUMO

OBJECTIVES: Differences in DNA methylation have been associated with early life adversity, suggesting that alterations in methylation function as one pathway through which adverse early environments are biologically embedded. This study examined associations between exposure to institutional care, quantified as the proportion of time in institutional care at specified follow-up assessment ages, and DNA methylation status in two stress-related genes: FKBP5 and SLC6A4. MATERIALS AND METHODS: We analyzed data from the Bucharest Early Intervention Project, which is a prospective study in which children reared in institutional settings were randomly assigned (mean age 22 months) to either newly created foster care or care as usual (to remain in their current placement) and prospectively followed. A group of children from the same geographic area, with no history of institutionalized caregiving, were also recruited. DNA methylation status was determined in DNA extracted from buccal epithelial cells of children at age 12. RESULTS: An inverse association was identified such that more time spent in institutional care was associated with lower DNA methylation at specific CpG sites within both genes. DISCUSSION: These results suggest a lasting impact of early severe social deprivation on methylation patterns in these genes, and contribute to a growing literature linking early adversity and epigenetic variation in children. Am J Phys Anthropol 161:84-93, 2016.. © 2016 Wiley Periodicals, Inc.


Assuntos
Metilação de DNA/genética , Institucionalização/estatística & dados numéricos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Estresse Fisiológico/genética , Proteínas de Ligação a Tacrolimo/genética , Criança , Pré-Escolar , Humanos , Lactente , Modelos Lineares , Estudos Prospectivos
6.
Sci Rep ; 14(1): 3871, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365887

RESUMO

With the beginning of the Early Bronze Age in Central Europe ~ 2200 BC, a regional and supra-regional hierarchical social organization emerged with few individuals in positions of power (chiefs), set apart by rich graves with extensive burial constructions. However, the social organization and stratification within the majority of people, who represent the non-elite, remain unclear. Here, we present genome-wide data of 46 individuals from the Early Bronze Age burial ground of Leubingen in today's Germany, integrating archaeological, genetic and strontium isotope data to gain new insights into Early Bronze Age societies. We were able to reconstruct five pedigrees which constitute the members of close biological kinship groups (parents and their offspring), and also identify individuals who are not related to individuals buried at the site. Based on combined lines of evidence, we observe that the kinship structure of the burial community was predominantly patrilineal/virilocal involving female exogamy. Further, we detect a difference in the amount of grave goods among the individuals buried at Leubingen based on genetic sex, age at death and locality but see no difference in the types of grave goods.


Assuntos
Arqueologia , Sepultamento , Humanos , Feminino , Alemanha , Europa (Continente) , Isótopos de Estrôncio
7.
Commun Biol ; 7(1): 723, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862782

RESUMO

The Eurasian Bronze Age (BA) has been described as a period of substantial human migrations, the emergence of pastoralism, horse domestication, and development of metallurgy. This study focuses on two north Eurasian sites sharing Siberian genetic ancestry. One of the sites, Rostovka, is associated with the Seima-Turbino (ST) phenomenon (~2200-1900 BCE) that is characterized by elaborate metallurgical objects found throughout Northern Eurasia. The genetic profiles of Rostovka individuals vary widely along the forest-tundra Siberian genetic cline represented by many modern Uralic-speaking populations, and the genetic heterogeneity observed is consistent with the current understanding of the ST being a transcultural phenomenon. Individuals from the second site, Bolshoy Oleni Ostrov in Kola, in comparison form a tighter cluster on the Siberian ancestry cline. We further explore this Siberian ancestry profile and assess the role of the ST phenomenon and other contemporaneous BA cultures in the spread of Uralic languages and Siberian ancestry.


Assuntos
Metalurgia , Sibéria , Humanos , História Antiga , Metalurgia/história , DNA Antigo/análise , Migração Humana , Arqueologia , Genética Populacional
8.
iScience ; 26(11): 108066, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37927550

RESUMO

Degraded DNA is used to answer questions in the fields of ancient DNA (aDNA) and forensic genetics. While aDNA studies typically center around human evolution and past history, and forensic genetics is often more concerned with identifying a specific individual, scientists in both fields face similar challenges. The overlap in source material has prompted periodic discussions and studies on the advantages of collaboration between fields toward mutually beneficial methodological advancements. However, most have been centered around wet laboratory methods (sampling, DNA extraction, library preparation, etc.). In this review, we focus on the computational side of the analytical workflow. We discuss limitations and considerations to consider when working with degraded DNA. We hope this review provides a framework to researchers new to computational workflows for how to think about analyzing highly degraded DNA and prompts an increase of collaboration between the forensic genetics and aDNA fields.

9.
Cell Genom ; 3(9): 100377, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37719142

RESUMO

The Tyrolean Iceman is known as one of the oldest human glacier mummies, directly dated to 3350-3120 calibrated BCE. A previously published low-coverage genome provided novel insights into European prehistory, despite high present-day DNA contamination. Here, we generate a high-coverage genome with low contamination (15.3×) to gain further insights into the genetic history and phenotype of this individual. Contrary to previous studies, we found no detectable Steppe-related ancestry in the Iceman. Instead, he retained the highest Anatolian-farmer-related ancestry among contemporaneous European populations, indicating a rather isolated Alpine population with limited gene flow from hunter-gatherer-ancestry-related populations. Phenotypic analysis revealed that the Iceman likely had darker skin than present-day Europeans and carried risk alleles associated with male-pattern baldness, type 2 diabetes, and obesity-related metabolic syndrome. These results corroborate phenotypic observations of the preserved mummified body, such as high pigmentation of his skin and the absence of hair on his head.

10.
Sci Rep ; 12(1): 22415, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575206

RESUMO

The Early Bronze Age in Europe is characterized by social and genetic transformations, starting in the early 3rd millennium BCE. New settlement and funerary structures, artifacts and techniques indicate times of change with increasing economic asymmetries and political hierarchization. Technological advances in metallurgy also played an important role, facilitating trade and exchange networks, which became tangible in higher levels of mobility and connectedness. Archeogenetic studies have revealed a substantial transformation of the genetic ancestry around this time, ultimately linked to the expansion of steppe- and forest steppe pastoralists from Eastern Europe. Evidence for emerging infectious diseases such as Yersinia pestis adds further complexity to these tumultuous and transformative times. The El Argar complex in southern Iberia marks the genetic turnover in southwestern Europe ~ 2200 BCE that accompanies profound changes in the socio-economic structure of the region. To answer the question of who was buried in the emblematic double burials of the El Argar site La Almoloya, we integrated results from biological relatedness analyses and archaeological funerary contexts and refined radiocarbon-based chronologies from 68 individuals. We find that the El Argar society was virilocally and patrilineally organized and practiced reciprocal female exogamy, supported by pedigrees that extend up to five generations along the paternal line. Synchronously dated adult males and females from double tombs were found to be unrelated mating partners, whereby the incoming females reflect socio-political alliances among El Argar groups. In three cases these unions had common offspring, while paternal half-siblings also indicate serial monogamy or polygyny.


Assuntos
Arqueologia , Sepultamento , Humanos , Adulto , Masculino , Feminino , História Antiga , Europa (Continente) , Europa Oriental , Família
11.
iScience ; 25(5): 104244, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494246

RESUMO

Sicily is a key region for understanding the agricultural transition in the Mediterranean because of its central position. Here, we present genomic and stable isotopic data for 19 prehistoric Sicilians covering the Mesolithic to Bronze Age periods (10,700-4,100 yBP). We find that Early Mesolithic hunter-gatherers (HGs) from Sicily are a highly drifted lineage of the Early Holocene western European HGs, whereas Late Mesolithic HGs carry ∼20% ancestry related to northern and (south) eastern European HGs, indicating substantial gene flow. Early Neolithic farmers are genetically most similar to farmers from the Balkans and Greece, with only ∼7% of ancestry from local Mesolithic HGs. The genetic discontinuities during the Mesolithic and Early Neolithic match the changes in material culture and diet. Three outlying individuals dated to ∼8,000 yBP; however, suggest that hunter-gatherers interacted with incoming farmers at Grotta dell'Uzzo, resulting in a mixed economy and diet for a brief interlude at the Mesolithic-Neolithic transition.

12.
Front Physiol ; 13: 885295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035495

RESUMO

The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.

13.
Front Physiol ; 12: 660906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262470

RESUMO

The individual physiological response to high-altitude hypoxia involves both genetic and non-genetic factors, including epigenetic modifications. Epigenetic changes in hypoxia factor pathway (HIF) genes are associated with high-altitude acclimatization. However, genome-wide epigenetic changes that are associated with short-term hypoxia exposure remain largely unknown. We collected a series of DNA samples from 15 participants of European ancestry trekking to Everest Base Camp to identify DNA methylation changes associated with incremental altitude ascent. We determined genome-wide DNA methylation levels using the Illumina MethylationEPIC chip comparing two altitudes: baseline 1,400 m (day 0) and elevation 4,240 m (day 7). The results of our epigenome-wide association study revealed 2,873 significant differentially methylated positions (DMPs) and 361 significant differentially methylated regions (DMRs), including significant positions and regions in hypoxia inducible factor (HIF) and the renin-angiotensin system (RAS) pathways. Our pathway enrichment analysis identified 95 significant pathways including regulation of glycolytic process (GO:0006110), regulation of hematopoietic stem cell differentiation (GO:1902036), and regulation of angiogenesis (GO:0045765). Lastly, we identified an association between the ACE gene insertion/deletion (I/D) polymorphism and oxygen saturation, as well as average ACE methylation. These findings shed light on the genes and pathways experiencing the most epigenetic change associated with short-term exposure to hypoxia.

14.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33185669

RESUMO

High-altitude adaptation is a classic example of natural selection operating on the human genome. Physiological and genetic adaptations have been documented in populations with a history of living at high altitude. However, the role of epigenetic gene regulation, including DNA methylation, in high-altitude adaptation is not well understood. We performed an epigenome-wide DNA methylation association study based on whole blood from 113 Peruvian Quechua with differential lifetime exposures to high altitude (>2,500) and recruited based on a migrant study design. We identified two significant differentially methylated positions (DMPs) and 62 differentially methylated regions (DMRs) associated with high-altitude developmental and lifelong exposure statuses. DMPs and DMRs were found in genes associated with hypoxia-inducible factor pathway, red blood cell production, blood pressure, and others. DMPs and DMRs associated with fractional exhaled nitric oxide also were identified. We found a significant association between EPAS1 methylation and EPAS1 SNP genotypes, suggesting that local genetic variation influences patterns of methylation. Our findings demonstrate that DNA methylation is associated with early developmental and lifelong high-altitude exposures among Peruvian Quechua as well as altitude-adaptive phenotypes. Together these findings suggest that epigenetic mechanisms might be involved in adaptive developmental plasticity to high altitude. Moreover, we show that local genetic variation is associated with DNA methylation levels, suggesting that methylation associated SNPs could be a potential avenue for research on genetic adaptation to hypoxia in Andeans.


Assuntos
Altitude , Epigênese Genética , Adulto , Metilação de DNA , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Masculino , Peru , Fenótipo , Polimorfismo de Nucleotídeo Único , Adulto Jovem
15.
Environ Int ; 155: 106587, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33940396

RESUMO

BACKGROUND: Inorganic lead (Pb) is common in the environment, and is toxic to neurological, renal, and cardiovascular systems. Pb exposure influences the epigenome with documented effects on DNA methylation (DNAm). We assessed the impact of low levels of Pb exposure on DNAm among non-miner individuals from two locations in Peru: Lima, the capital, and Cerro de Pasco, a highland mining town, to study the effects of Pb exposure on physiological outcomes and DNAm. METHODS: Pb levels were measured in whole blood (n = 305). Blood leukocyte DNAm was determined for 90 DNA samples using the Illumina MethylationEPIC chip. An epigenome-wide association study was performed to assess the relationship between Pb and DNAm. RESULTS: Individuals from Cerro de Pasco had higher Pb than individuals from Lima (p-value = 2.00E-16). Males had higher Pb than females (p-value = 2.36E-04). Pb was positively associated with hemoglobin (p-value = 8.60E-04). In Cerro de Pasco, blood Pb decreased with the distance from the mine (p-value = 0.04), and association with soil Pb was approaching significance (p-value = 0.08). We identified differentially methylated positions (DMPs) associated with genes SOX18, ZMIZ1, and KDM1A linked to neurological function. We also found 45 differentially methylated regions (DMRs), seven of which were associated with genes involved in metal ion binding and nine to neurological function and development. CONCLUSIONS: Our results demonstrate that even low levels of Pb can have a significant impact on the body including changes to DNAm. We report associations between Pb and hemoglobin, Pb and distance from mining, and between blood and soil Pb. We also report associations between loci- and region-specific DNAm and Pb.


Assuntos
Metilação de DNA , Chumbo , Adulto , Epigênese Genética , Epigenoma , Feminino , Hispânico ou Latino , Histona Desmetilases , Humanos , Chumbo/toxicidade , Masculino , Peru , Fatores de Transcrição SOXF
16.
Sci Rep ; 11(1): 15005, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294811

RESUMO

Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective. Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture assays such as the 1240 k, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield. Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the "mappable" regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240 k capture, YMCA significantly improves the mean coverage and number of sites covered on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants. To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.


Assuntos
Alelos , Cromossomos Humanos Y , Genética Populacional , Haplótipos , DNA Mitocondrial , Marcadores Genéticos , Testes Genéticos , Genética Populacional/métodos , Humanos , Polimorfismo de Nucleotídeo Único
17.
Sci Adv ; 7(47): eabi7038, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788096

RESUMO

The emerging Bronze Age (BA) of southeastern Iberia saw marked social changes. Late Copper Age (CA) settlements were abandoned in favor of hilltop sites, and collective graves were largely replaced by single or double burials with often distinctive grave goods indirectly reflecting a hierarchical social organization, as exemplified by the BA El Argar group. We explored this transition from a genomic viewpoint by tripling the amount of data available for this period. Concomitant with the rise of El Argar starting ~2200 cal BCE, we observe a complete turnover of Y-chromosome lineages along with the arrival of steppe-related ancestry. This pattern is consistent with a founder effect in male lineages, supported by our finding that males shared more relatives at sites than females. However, simple two-source models do not find support in some El Argar groups, suggesting additional genetic contributions from the Mediterranean that could predate the BA.

18.
Front Genet ; 10: 1062, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737045

RESUMO

Genetic and nongenetic factors are involved in the individual ability to physiologically acclimatize to high-altitude hypoxia through processes that include increased heart rate and ventilation. High-altitude acclimatization is thought to have a genetic component, yet it is unclear if other factors, such as epigenetic gene regulation, are involved in acclimatization to high-altitude hypoxia in nonacclimatized individuals. We collected saliva samples from a group of healthy adults of European ancestry (n = 21) in Kathmandu (1,400 m; baseline) and three altitudes during a trek to the Everest Base Camp: Namche (3,440 m; day 3), Pheriche (4,240 m; day 7), and Gorak Shep (5,160 m; day 10). We used quantitative bisulfite pyrosequencing to determine changes in DNA methylation, a well-studied epigenetic marker, in LINE-1, EPAS1, EPO, PPARa, and RXRa. We found significantly lower DNA methylation between baseline (1,400 m) and high altitudes in LINE-1, EPO (at 4,240 m only), and RXRa. We found increased methylation in EPAS1 (at 4,240 m only) and PPARa. We also found positive associations between EPO methylation and systolic blood pressure and RXRa methylation and hemoglobin. Our results show that incremental exposure to hypoxia can affect the epigenome. Changes to the epigenome, in turn, could underlie the process of altitude acclimatization.

19.
Epigenetics ; 14(1): 1-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30574831

RESUMO

Recent discoveries indicate a genetic basis for high-altitude adaptation among human groups who have resided at high altitude for millennia, including Andeans, Tibetans, and Ethiopians. Yet, genetics alone does not explain the extent of variation in altitude-adaptive phenotypes. Current and past environments may also play a role, and one way to determine the effect of the environment is through the epigenome. To characterize if Andean adaptive responses to high altitude have an epigenetic component, we analyzed DNA methylation of the promoter region of EPAS1 and LINE-1 repetitive element among 572 Quechua individuals from high- (4,388 m) and low-altitude (0 m) in Peru. Participants recruited at high altitude had lower EPAS1 DNA methylation and higher LINE-1 methylation. Altitude of birth was associated with higher LINE-1 methylation, not with EPAS1 methylation. The number of years lived at high altitude was negatively associated with EPAS1 methylation and positively associated with LINE-1 methylation. We found four one-carbon metabolism SNPs (MTHFD1 rs2236225, TYMS rs502396, FOLH1 rs202676, GLDC rs10975681) that cumulatively explained 11.29% of the variation in average LINE-1 methylation. And identified an association between LINE-1 methylation and genome-wide SNP principal component 1 that distinguishes European from Indigenous American ancestry suggesting that European admixture decreases LINE-1 methylation. Our results indicate that both current and lifetime exposure to high-altitude hypoxia have an effect on EPAS1 and LINE-1 methylation among Andean Quechua, suggesting that epigenetic modifications may play a role in high-altitude adaptation.


Assuntos
Doença da Altitude/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Metilação de DNA , Elementos Nucleotídeos Longos e Dispersos/genética , Adaptação Fisiológica/genética , Adolescente , Adulto , Altitude , Doença da Altitude/etnologia , Epigênese Genética , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA