Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(4): 2282-92, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25670677

RESUMO

Curved DNA binding protein A (CbpA) is a co-chaperone and nucleoid associated DNA binding protein conserved in most γ-proteobacteria. Best studied in Escherichia coli, CbpA accumulates to >2500 copies per cell during periods of starvation and forms aggregates with DNA. However, the molecular basis for DNA binding is unknown; CbpA lacks motifs found in other bacterial DNA binding proteins. Here, we have used a combination of genetics and biochemistry to elucidate the mechanism of DNA recognition by CbpA. We show that CbpA interacts with the DNA minor groove. This interaction requires a highly conserved arginine side chain. Substitution of this residue, R116, with alanine, specifically disrupts DNA binding by CbpA, and its homologues from other bacteria, whilst not affecting other CbpA activities. The intracellular distribution of CbpA alters dramatically when DNA binding is negated. Hence, we provide a direct link between DNA binding and the behaviour of CbpA in cells.


Assuntos
Arginina/química , Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , DNA/metabolismo , Proteínas de Escherichia coli/química , Substituição de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica
2.
PLoS Genet ; 9(1): e1003152, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341772

RESUMO

The Escherichia coli curved DNA binding protein A (CbpA) is a poorly characterised nucleoid associated factor and co-chaperone. It is expressed at high levels as cells enter stationary phase. Using genetics, biochemistry, and genomics, we have examined regulation of, and DNA binding by, CbpA. We show that Fis, the dominant growth-phase nucleoid protein, prevents CbpA expression in growing cells. Regulation by Fis involves an unusual "insulation" mechanism. Thus, Fis protects cbpA from the effects of a distal promoter, located in an adjacent gene. In stationary phase, when Fis levels are low, CbpA binds the E. coli chromosome with a preference for the intrinsically curved Ter macrodomain. Disruption of the cbpA gene prompts dramatic changes in DNA topology. Thus, our work identifies a novel role for Fis and incorporates CbpA into the growing network of factors that mediate bacterial chromosome structure.


Assuntos
Proteínas de Transporte , Cromossomos Bacterianos , Proteínas de Escherichia coli , Escherichia coli , Fator Proteico para Inversão de Estimulação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/ultraestrutura , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica
3.
Nucleic Acids Res ; 41(9): 5115-26, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525462

RESUMO

The clamp-loader complex plays a crucial role in DNA replication by loading the ß-clamp onto primed DNA to be used by the replicative polymerase. Relatively little is known about the stoichiometry, structure and assembly pathway of this complex, and how it interacts with the replicative helicase, in Gram-positive organisms. Analysis of full and partial complexes by mass spectrometry revealed that a hetero-pentameric τ3-δ-δ' Bacillus subtilis clamp-loader assembles via multiple pathways, which differ from those exhibited by the Gram-negative model Escherichia coli. Based on this information, a homology model of the B. subtilis τ3-δ-δ' complex was constructed, which revealed the spatial positioning of the full C-terminal τ domain. The structure of the δ subunit was determined by X-ray crystallography and shown to differ from that of E. coli in the nature of the amino acids comprising the τ and δ' binding regions. Most notably, the τ-δ interaction appears to be hydrophilic in nature compared with the hydrophobic interaction in E. coli. Finally, the interaction between τ3 and the replicative helicase DnaB was driven by ATP/Mg(2+) conformational changes in DnaB, and evidence is provided that hydrolysis of one ATP molecule by the DnaB hexamer is sufficient to stabilize its interaction with τ3.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , DnaB Helicases/química , Subunidades Proteicas/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , DnaB Helicases/metabolismo , Geobacillus stearothermophilus/enzimologia , Magnésio/química , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/metabolismo , Homologia Estrutural de Proteína
4.
Nucleic Acids Res ; 38(20): 7167-78, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20591822

RESUMO

Bacterial primase is stimulated by replicative helicase to produce RNA primers that are essential for DNA replication. To identify mechanisms regulating primase activity, we characterized primase initiation specificity and interactions with the replicative helicase for gram-positive Firmicutes (Staphylococcus, Bacillus and Geobacillus) and gram-negative Proteobacteria (Escherichia, Yersinia and Pseudomonas). Contributions of the primase zinc-binding domain, RNA polymerase domain and helicase-binding domain on de novo primer synthesis were determined using mutated, truncated, chimeric and wild-type primases. Key residues in the ß4 strand of the primase zinc-binding domain defined class-associated trinucleotide recognition and substitution of these amino acids transferred specificity across classes. A change in template recognition provided functional evidence for interaction in trans between the zinc-binding domain and RNA polymerase domain of two separate primases. Helicase binding to the primase C-terminal helicase-binding domain modulated RNA primer length in a species-specific manner and productive interactions paralleled genetic relatedness. Results demonstrated that primase template specificity is conserved within a bacterial class, whereas the primase-helicase interaction has co-evolved within each species.


Assuntos
DNA Helicases/metabolismo , DNA Primase/química , RNA/biossíntese , Sequência de Aminoácidos , DNA/química , DNA/metabolismo , DNA Primase/genética , DNA Primase/metabolismo , Teste de Complementação Genética , Bactérias Gram-Positivas/enzimologia , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Estrutura Terciária de Proteína , Proteobactérias/enzimologia , Especificidade da Espécie , Moldes Genéticos
5.
Mol Microbiol ; 77(5): 1289-300, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20633229

RESUMO

The Escherichia coli curved DNA-binding protein A (CbpA) is a nucleoid-associated DNA-binding factor and chaperone that is expressed at high levels as cells enter stationary phase. Using a combination of genetics, biochemistry, structural modelling and single-molecule atomic force microscopy we have examined dimerization of, and DNA binding by, CbpA. Our data show that CbpA dimerization is driven by a hydrophobic surface comprising amino acid side chains W287 and L290 located on the same side of an α helix close to the C-terminus of CbpA. Derivatives of CbpA that are unable to dimerize are also unable to bind DNA. Free in solution, CbpA can exist as either a monomer or dimer. However, when bound to DNA, CbpA forms large aggregates that can protect DNA from degradation by nucleases. These CbpA-DNA aggregates are similar in morphology to protein-DNA complexes formed by the DNA-binding protein from starved cells (Dps), the only other stationary phase-specific nucleoid protein. Conversely, protein-DNA complexes formed by Fis, the major growth phase nucleoid protein, have a markedly different appearance.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Multimerização Proteica , Escherichia coli/genética , Escherichia coli/metabolismo , Ligação Proteica
6.
Mol Microbiol ; 72(2): 537-49, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19415803

RESUMO

During DNA replication the helicase (DnaB) recruits the primase (DnaG) in the replisome to initiate the polymerization of new DNA strands. DnaB is attached to the tau subunit of the clamp-loader that loads the beta clamp and interconnects the core polymerases on the leading and lagging strands. The tau-DnaB-DnaG ternary complex is at the heart of the replisome and its function is likely to be modulated by a complex network of allosteric interactions. Using a stable ternary complex comprising the primase and helicase from Geobacillus stearothermophilus and the tau subunit of the clamp-loader from Bacillus subtilis we show that changes in the DnaB-tau interaction can stimulate allosterically primer synthesis by DnaG in vitro. The A550V tau mutant stimulates the primase activity more efficiently than the native protein. Truncation of the last 18 C-terminal residues of tau elicits a DnaG-stimulatory effect in vitro that appears to be suppressed in the native tau protein. Thus changes in the tau-DnaB interaction allosterically affect primer synthesis. Although these C-terminal residues of tau are not involved directly in the interaction with DnaB, they may act as a functional gateway for regulation of primer synthesis by tau-interacting components of the replisome through the tau-DnaB-DnaG pathway.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Primase/metabolismo , Replicação do DNA , DnaB Helicases/metabolismo , Geobacillus stearothermophilus/enzimologia , Regulação Alostérica , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Primers do DNA/metabolismo , DNA Bacteriano/biossíntese , Biblioteca Gênica , Geobacillus stearothermophilus/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Multimerização Proteica
7.
Mol Microbiol ; 68(2): 360-71, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18366438

RESUMO

The bacterial primosome comprises the replicative homo-hexameric ring helicase DnaB and the primase DnaG. It is an integral component of the replisome as it unwinds the parental DNA duplex to allow progression of the replication fork, synthesizes the initiation primers at the replication origin, oriC, and the primers required for Okazaki fragment synthesis during lagging strand replication. The interaction between the two component proteins is mediated by a distinct C-terminal domain (p16) of the primase. Both proteins mutually regulate each other's activities and a putative network of conserved residues has been proposed to mediate these effects. We have targeted 10 residues from this network. To investigate the functional contributions of these residues to the primase, ATPase and helicase activities of the primosome, we have used site-directed mutagenesis and in vitro functional assays. Five of these residues (E464, H494, R495, Y548 and R555) exhibited some functional significance while the remaining five (E483, R484, E506, D512 and E530) exhibited no effects. E464 participates in functional modulation of the primase activity, whereas H494, R495 and R555 participate in allosteric functional modulation of the ATPase and/or helicase activities. Y548 contributes directly to the structural interaction with DnaB.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Primase/genética , DNA Primase/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , DNA Primase/química , DNA Primase/isolamento & purificação , DNA Bacteriano/metabolismo , DnaB Helicases/genética , DnaB Helicases/metabolismo , Geobacillus stearothermophilus/enzimologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , RNA Bacteriano/metabolismo
8.
J Mol Biol ; 411(2): 313-20, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21683710

RESUMO

Hsp40-like co-chaperones are ubiquitous enzymes that stimulate the protein refolding activity of Hsp70 family chaperones. They are widespread in prokaryotic and eukaryotic systems. In bacteria, the best characterized co-chaperone is the Escherichia coli DnaJ protein. Many γ-proteobacteria encode a functional homologue of DnaJ, known as CbpA, which is expressed in response to starvation and environmental stress. The activity of CbpA is regulated by the "modulator" protein CbpM. Here, we have used a combination of genetics and biochemistry to identify the co-chaperone contact determinant of CbpM. We show that the nature of the interaction is conserved in enterobacteria.


Assuntos
Aminoácidos Acídicos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Sequência Conservada , Enterobacteriaceae/enzimologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Aminoácidos Acídicos/genética , Proteínas de Bactérias/genética , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP40/genética , Filogenia , Ligação Proteica , Mapeamento de Interação de Proteínas , Homologia de Sequência de Aminoácidos
9.
Mol Microbiol ; 63(6): 1629-39, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17367384

RESUMO

The bacterial primase (DnaG)-helicase (DnaB) interaction is mediated by the C-terminal domain of DnaG (p16) and a linker that joins the N- and C-terminal domains (p17 and p33 respectively) of DnaB. The crystal and nuclear magnetic resonance structures of p16 from Escherichia coli and Bacillus stearothermophilus DnaG proteins revealed a unique structural homology with p17, despite the lack of amino acid sequence similarity. The functional significance of this is not clear. Here, we have employed a 'domain swapping' approach to replace p17 with its structural homologue p16 to create chimeras. p33 alone hydrolyses ATP but exhibits no helicase activity. Fusing p16 (p16-p33) or DnaG (G-p33) to the N-terminus of p33 produced chimeras with partially restored helicase activities. Neither chimera interacted with DnaG. The p16-p33 chimera formed hexamers while G-p33 assembled into tetramers. Furthermore, G-p33 and DnaB formed mixed oligomers with ATPase activity better than that of the DnaB/DnaG complex and helicase activity better than the sum of the individual DnaB and G-p33 activities but worse than that of the DnaB/DnaG complex. Our combined data provide direct evidence that p16 and p17 are not only structural but also functional homologues, albeit their amino acid composition differences are likely to influence their precise roles.


Assuntos
Quimera/metabolismo , DNA Primase/metabolismo , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , DNA Primase/química , DnaB Helicases/química , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/química , Exodesoxirribonucleases/metabolismo , Geobacillus stearothermophilus/enzimologia , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA