Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
medRxiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39148858

RESUMO

Novel biomarkers of type 1 diabetes (T1D) are needed for earlier detection of disease and identifying therapeutic targets. We identified biomarkers of T1D by combining plasma cis and trans protein QTLs (pQTLs) for 2,922 proteins in the UK Biobank with a T1D genome-wide association study (GWAS) in 157k samples. T1D risk variants at over 20% of known loci colocalized with cis or trans pQTLs, and distinct sets of T1D loci colocalized with immune, pancreatic secretion, or gut-related proteins. We identified 23 proteins with evidence for a causal role in using pQTLs as genetic instruments in Mendelian Randomization which included multiple sensitivity analyses. Proteins increasing T1D risk were involved in immune processes (e.g. HLA-DRA) and, more surprisingly, T1D protective proteins were enriched in pancreatic secretions (e.g. CPA1), cholesterol metabolism (e.g. APOA1), and gut homeostasis. Genetic variants associated with plasma levels of T1D-protective pancreatic enzymes such as CPA1 were enriched in cis-regulatory elements in pancreatic exocrine and gut enteroendocrine cells, and the protective effects of CPA1 and other enzymes on T1D were consistent when using instruments specific to acinar cells. Finally, pancreatic enzymes had decreased acinar expression in T1D, including CPA1 which was altered prior to onset. Together, these results reveal causal biomarkers and highlight processes in the exocrine pancreas, immune system, and gut that modulate T1D risk.

2.
Nat Commun ; 15(1): 6469, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085222

RESUMO

Genetic variation in the human leukocyte antigen (HLA) loci is associated with risk of immune-mediated diseases, but the molecular effects of HLA polymorphism are unclear. Here we examined the effects of HLA genetic variation on the expression of 2940 plasma proteins across 45,330 Europeans in the UK Biobank, with replication analyses across multiple ancestry groups. We detected 504 proteins affected by HLA variants (HLA-pQTL), including widespread trans effects by autoimmune disease risk alleles. More than 80% of the HLA-pQTL fine-mapped to amino acid positions in the peptide binding groove. HLA-I and II affected proteins expressed in similar cell types but in different pathways of both adaptive and innate immunity. Finally, we investigated potential HLA-pQTL effects on disease by integrating HLA-pQTL with fine-mapped HLA-disease signals in the UK Biobank. Our data reveal the diverse effects of HLA genetic variation and aid the interpretation of associations between HLA alleles and immune-mediated diseases.


Assuntos
Alelos , Proteínas Sanguíneas , Variação Genética , Antígenos HLA , Humanos , Antígenos HLA/genética , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Reino Unido , Predisposição Genética para Doença , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , População Branca/genética , Imunidade Inata/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA