Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0078023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37702486

RESUMO

IMPORTANCE: AAVs are extensively studied as promising therapeutic gene delivery vectors. In order to circumvent pre-existing antibodies targeting primate-based AAV capsids, the AAAV capsid was evaluated as an alternative to primate-based therapeutic vectors. Despite the high sequence diversity, the AAAV capsid was found to bind to a common glycan receptor, terminal galactose, which is also utilized by other AAVs already being utilized in gene therapy trials. However, contrary to the initial hypothesis, AAAV was recognized by approximately 30% of human sera tested. Structural and sequence comparisons point to conserved epitopes in the fivefold region of the capsid as the reason determinant for the observed cross-reactivity.


Assuntos
Antígenos Virais , Capsídeo , Parvovirinae , Animais , Humanos , Capsídeo/química , Proteínas do Capsídeo/química , Dependovirus/química , Vetores Genéticos , Primatas/genética , Antígenos Virais/química , Parvovirinae/química
2.
J Virol ; 97(7): e0177222, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310260

RESUMO

Adeno-associated virus (AAV) is a nonenveloped single-stranded DNA (ssDNA) icosahedral T=1 virus being developed as a vector for clinical gene delivery systems. Currently, there are approximately 160 AAV clinical trials, with AAV2 being the most widely studied serotype. To further understand the AAV gene delivery system, this study investigates the role of viral protein (VP) symmetry interactions on capsid assembly, genome packaging, stability, and infectivity. A total of 25 (seven 2-fold, nine 3-fold, and nine 5-fold symmetry interface) AAV2 VP variants were studied. Six 2-fold and two 5-fold variants did not assemble capsids based on native immunoblots and anti-AAV2 enzyme-linked immunosorbent assays (ELISAs). Seven of the 3-fold and seven of the 5-fold variants that assembled capsids were less stable, while the only 2-fold variant that assembled had ~2°C higher thermal stability (Tm) than recombinant wild-type AAV2 (wtAAV2). Three of the 3-fold variants (AAV2-R432A, AAV2-L510A, and N511R) had an approximately 3-log defect in genome packaging. Consistent with previous reports of the 5-fold axes, the region of the capsid is important for VP1u externalization and genome ejection, and one 5-fold variant (R404A) had a significant defect in viral infectivity. The structures of wtAAV2 packaged with a transgene (AAV2-full) and without a transgene (AAV2-empty) and one 5-fold variant (AAV2-R404A) were determined by cryo-electron microscopy and three dimensional (3D)-image reconstruction to 2.8, 2.9, and 3.6 Å resolution, respectively. These structures revealed the role of stabilizing interactions on the assembly, stability, packaging, and infectivity of the virus capsid. This study provides insight into the structural characterization and functional implications of the rational design of AAV vectors. IMPORTANCE Adeno-associated viruses (AAVs) have been shown to be useful vectors for gene therapy applications. Consequently, AAV has been approved as a biologic for the treatment of several monogenic disorders, and many additional clinical trials are ongoing. These successes have generated significant interest in all aspects of the basic biology of AAV. However, to date, there are limited data available on the importance of the capsid viral protein (VP) symmetry-related interactions required to assemble and maintain the stability of the AAV capsids and the infectivity of the AAV capsids. Characterizing the residue type and interactions at these symmetry-driven assembly interfaces of AAV2 has provided the foundation for understanding their role in AAV vectors (serotypes and engineered chimeras) and has determined the residues or regions of the capsid that can or cannot tolerate alterations.


Assuntos
Capsídeo , Parvovirinae , Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Sorogrupo , Microscopia Crioeletrônica , Proteínas do Capsídeo/metabolismo , Parvovirinae/genética , Parvovirinae/metabolismo , Proteínas Virais/metabolismo , Vetores Genéticos , Montagem de Vírus
3.
Mol Ther ; 31(7): 1979-1993, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012705

RESUMO

Success in the treatment of infants with spinal muscular atrophy (SMA) underscores the potential of vectors based on adeno-associated virus (AAV). However, a major obstacle to the full realization of this potential is pre-existing natural and therapy-induced anti-capsid humoral immunity. Structure-guided capsid engineering is one possible approach to surmounting this challenge but necessitates an understanding of capsid-antibody interactions at high molecular resolution. Currently, only mouse-derived monoclonal antibodies (mAbs) are available to structurally map these interactions, which presupposes that mouse and human-derived antibodies are functionally equivalent. In this study, we have characterized the polyclonal antibody responses of infants following AAV9-mediated gene therapy for SMA and recovered 35 anti-capsid mAbs from the abundance of switched-memory B (smB) cells present in these infants. For 21 of these mAbs, seven from each of three infants, we have undertaken functional and structural analysis measuring neutralization, affinities, and binding patterns by cryoelectron microscopy (cryo-EM). Four distinct patterns were observed akin to those reported for mouse-derived mAbs, but with early evidence of differing binding pattern preference and underlying molecular interactions. This is the first human and largest series of anti-capsid mAbs to have been comprehensively characterized and will prove to be powerful tools for basic discovery and applied purposes.


Assuntos
Anticorpos Monoclonais , Capsídeo , Lactente , Humanos , Animais , Camundongos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/genética , Microscopia Crioeletrônica , Capsídeo/química , Proteínas do Capsídeo/química , Dependovirus , Terapia Genética , Vetores Genéticos/genética
4.
J Virol ; 96(3): e0125121, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34757842

RESUMO

Adeno-associated viruses (AAV) serve as vectors for therapeutic gene delivery. AAV9 vectors have been FDA approved, as Zolgensma, for the treatment of spinal muscular atrophy and are being evaluated in clinical trials for the treatment of neurotropic and musculotropic diseases. A major hurdle for AAV-mediated gene delivery is the presence of preexisting neutralizing antibodies in 40 to 80% of the general population. These preexisting antibodies can reduce therapeutic efficacy through viral neutralization and the size of the patient cohort eligible for treatment. In this study, cryo-electron microscopy and image reconstruction were used to define the epitopes of five anti-AAV9 monoclonal antibodies (MAbs), ADK9, HL2368, HL2370, HL2372, and HL2374, on the capsid surface. Three of these, ADK9, HL2370, and HL2374, bound to or near the icosahedral 3-fold axes, HL2368 bound to the 2/5-fold wall, and HL2372 bound to the region surrounding the 5-fold axes. Pseudoatomic modeling enabled the mapping and identification of antibody contact amino acids on the capsid, including S454 and P659. These epitopes overlap previously defined parvovirus antigenic sites. Capsid amino acids critical for the interactions were confirmed by mutagenesis, followed by biochemical assays testing recombinant AAV9 (rAAV9) variants capable of escaping recognition and neutralization by the parental MAbs. These variants retained parental tropism and had similar or improved transduction efficiency compared to AAV9. These engineered rAAV9 variants could expand the patient cohort eligible for AAV9-mediated gene delivery by avoiding preexisting circulating neutralizing antibodies. IMPORTANCE The use of recombinant adeno-associated viruses (rAAVs) as delivery vectors for therapeutic genes is becoming increasingly popular, especially following the FDA approval of Luxturna and Zolgensma, based on serotypes AAV2 and AAV9, respectively. However, high-titer anti-AAV neutralizing antibodies in the general population exempt patients from treatment. The goal of this study is to circumvent this issue by creating AAV variant vectors not recognized by preexisting neutralizing antibodies. The mapping of the antigenic epitopes of five different monoclonal antibodies (MAbs) on AAV9, to recapitulate a polyclonal response, enabled the rational design of escape variants with minimal disruption to cell tropism and gene expression. This study, which included four newly developed and now commercially available MAbs, provides a platform for the engineering of rAAV9 vectors that can be used to deliver genes to patients with preexisting AAV antibodies.


Assuntos
Antígenos Virais/química , Antígenos Virais/imunologia , Dependovirus/imunologia , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Sítios de Ligação , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Dependovirus/ultraestrutura , Mapeamento de Epitopos/métodos , Humanos , Modelos Moleculares , Testes de Neutralização , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
5.
J Virol ; 96(11): e0033522, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35532224

RESUMO

Adeno-associated viruses (AAVs) are being developed as clinical gene therapy vectors. One issue undermining their broad use in the clinical setting is the high prevalence of circulating antibodies in the general population capable of neutralizing AAV vectors. Hence, there is a need for AAV vectors that can evade the preexisting immune response. One possible source of human naive vectors are AAVs that do not disseminate in the primate population, and one such example is serpentine AAV (SAAV). This study characterizes the structural and biophysical properties of the SAAV capsid and its receptor interactions and antigenicity. Single particle cryo-electron microscopy (cryo-EM) and thermal stability studies were conducted to characterize the SAAV capsid structure at pH 7.4, 6.0, 5.5, and 4.0, conditions experienced during cellular trafficking. Cell binding assays using Chinese hamster ovary (CHO) cell lines identified terminal sialic acid as the primary attachment receptor for SAAV similar to AAV1, 4, 5, and 6. The binding site of sialic acid to the SAAV capsid was mapped near the 2-fold axis toward the 2/5-fold wall, in a different location than AAV1, 4, 5, and 6. Towards determining the SAAV capsid antigenicity native immunodot blots showed that SAAV evades AAV serotype-specific mouse monoclonal antibodies. However, despite its reptilian origin, it was recognized by ~25% of 50 human sera tested, likely due to the presence of cross-reactive antibodies. These findings will inform future gene delivery applications using SAAV-based vectors and further aid the structural characterization and annotation of the repertoire of available AAV capsids. IMPORTANCE AAVs are widely studied therapeutic gene delivery vectors. However, preexisting antibodies and their detrimental effect on therapeutic efficacy are a primary challenge encountered during clinical trials. In order to circumvent preexisting neutralizing antibodies targeting mammalian AAV capsids, serpentine AAV (SAAV) was evaluated as a potential alternative to existing mammalian therapeutic vectors. The SAAV capsid was found to be thermostable at a wide range of environmental pH conditions, and its structure showed conservation of the core capsid topology but displays high structural variability on the surface. At the same time, it binds to a common receptor, sialic acid, that is also utilized by other AAVs already being utilized in gene therapy trials. Contrary to the initial hypothesis, SAAV capsids were recognized by one in four human sera tested, pointing to conserved amino acids around the 5-fold region as epitopes for cross-reacting antibodies.


Assuntos
Capsídeo , Dependovirus , Animais , Células CHO , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Cricetinae , Cricetulus , Reações Cruzadas , Microscopia Crioeletrônica , Dependovirus/fisiologia , Epitopos , Vetores Genéticos , Humanos , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(33): 20211-20222, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747554

RESUMO

The giant tiger prawn (Penaeus monodon) is a decapod crustacean widely reared for human consumption. Currently, viruses of two distinct lineages of parvoviruses (PVs, family Parvoviridae; subfamily Hamaparvovirinae) infect penaeid shrimp. Here, a PV was isolated and cloned from Vietnamese P. monodon specimens, designated Penaeus monodon metallodensovirus (PmMDV). This is the first member of a third divergent lineage shown to infect penaeid decapods. PmMDV has a transcription strategy unique among invertebrate PVs, using extensive alternative splicing and incorporating transcription elements characteristic of vertebrate-infecting PVs. The PmMDV proteins have no significant sequence similarity with other PVs, except for an SF3 helicase domain in its nonstructural protein. Its capsid structure, determined by cryoelectron microscopy to 3-Å resolution, has a similar surface morphology to Penaeus stylirostris densovirus, despite the lack of significant capsid viral protein (VP) sequence similarity. Unlike other PVs, PmMDV folds its VP without incorporating a ßA strand and displayed unique multimer interactions, including the incorporation of a Ca2+ cation, attaching the N termini under the icosahedral fivefold symmetry axis, and forming a basket-like pentamer helix bundle. While the PmMDV VP sequence lacks a canonical phospholipase A2 domain, the structure of an EDTA-treated capsid, determined to 2.8-Å resolution, suggests an alternative membrane-penetrating cation-dependent mechanism in its N-terminal region. PmMDV is an observed example of convergent evolution among invertebrate PVs with respect to host-driven capsid structure and unique as a PV showing a cation-sensitive/dependent basket structure for an alternative endosomal egress.


Assuntos
Evolução Biológica , Proteínas do Capsídeo/genética , Densovirus/genética , Penaeidae/virologia , Animais , Regulação Viral da Expressão Gênica , Genoma Viral
7.
J Virol ; 95(19): e0084321, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260280

RESUMO

Adeno-associated viruses (AAVs) are small nonenveloped single-stranded DNA (ssDNA) viruses that are currently being developed as gene therapy biologics. After cell entry, AAVs traffic to the nucleus using the endo-lysosomal pathway. The subsequent decrease in pH triggers conformational changes to the capsid that enable the externalization of the capsid protein (VP) N termini, including the unique domain of the minor capsid protein VP1 (VP1u), which permits the phospholipase activity required for the capsid lysosomal egress. Here, we report the AAV9 capsid structure, determined at the endosomal pHs (7.4, 6.0, 5.5, and 4.0), and terminal galactose-bound AAV9 capsids at pHs 7.4 and 5.5 using cryo-electron microscopy and three-dimensional image reconstruction. Taken together, these studies provide insight into AAV9 capsid conformational changes at the 5-fold pore during endosomal trafficking, in both the presence and absence of its cellular glycan receptor. We visualized, for the first time, that acidification induces the externalization of the VP3 and possibly VP2 N termini, presumably in prelude to the externalization of VP1u at pH 4.0, which is essential for lysosomal membrane disruption. In addition, the structural study of AAV9-galactose interactions demonstrates that AAV9 remains attached to its glycan receptor at the late endosome pH 5.5. This interaction significantly alters the conformational stability of the variable region I of the VPs, as well as the dynamics associated with VP N terminus externalization. IMPORTANCE There are 13 distinct Adeno-associated virus (AAV) serotypes that are structurally homologous and whose capsid proteins (VP1 to -3) are similar in amino acid sequence. However, AAV9 is one of the most commonly studied and is used as a gene therapy vector. This is partly because AAV9 is capable of crossing the blood-brain barrier and readily transduces a wide array of tissues, including the central nervous system. In this study, we provide AAV9 capsid structural insight during intracellular trafficking. Although the AAV capsid has been shown to externalize the N termini of its VPs, to enzymatically disrupt the lysosome membrane at low pH, there was no structural evidence to confirm this. By utilizing AAV9 as our model, we provide the first structural evidence that the externalization process occurs at the protein interface at the icosahedral 5-fold symmetry axis and can be triggered by lowering the pH.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/ultraestrutura , Dependovirus/química , Dependovirus/ultraestrutura , Endossomos/metabolismo , Galactose/metabolismo , Polissacarídeos/metabolismo , Acetilgalactosamina/metabolismo , Capsídeo/química , Microscopia Crioeletrônica , Dependovirus/metabolismo , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Receptores Virais/metabolismo
8.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33472934

RESUMO

Human bocavirus 1 (HBoV1) and HBoV2-4 infect children and immunocompromised individuals, resulting in respiratory and gastrointestinal infections, respectively. Using cryo-electron microscopy and image reconstruction, the HBoV2 capsid structure was determined to 2.7 Å resolution at pH 7.4 and compared to the previously determined HBoV1, HBoV3, and HBoV4 structures. Consistent with previous findings, surface variable region (VR) III of the capsid protein VP3, proposed as a host tissue-tropism determinant, was structurally similar among the gastrointestinal strains HBoV2-4, but differed from HBoV1 with its tropism for the respiratory tract. Towards understanding the entry and trafficking properties of these viruses, HBoV1 and HBoV2 were further analyzed as species representatives of the two HBoV tropisms. Their cell surface glycan-binding characteristics were analyzed, and capsid structures determined to 2.5-2.7 Å resolution at pH 5.5 and 2.6, conditions normally encountered during infection. The data showed that glycans with terminal sialic acid, galactose, GlcNAc or heparan sulfate moieties do not facilitate HBoV1 or HBoV2 cellular attachment. With respect to trafficking, conformational changes common to both viruses were observed at low pH conditions localized to the VP N-terminus under the 5-fold channel, in the surface loops VR-I and VR-V and specific side-chain residues such as cysteines and histidines. The 5-fold conformational movements provide insight into the potential mechanism of VP N-terminal dynamics during HBoV infection and side-chain modifications highlight pH-sensitive regions of the capsid.IMPORTANCE Human bocaviruses (HBoVs) are associated with disease in humans. However, the lack of an animal model and a versatile cell culture system to study their life cycle limits the ability to develop specific treatments or vaccines. This study presents the structure of HBoV2, at 2.7 Å resolution, determined for comparison to the existing HBoV1, HBoV3, and HBoV4 structures, to enable the molecular characterization of strain and genus-specific capsid features contributing to tissue tropism and antigenicity. Furthermore, HBoV1 and HBoV2 structures determined under acidic conditions provide insight into capsid changes associated with endosomal and gastrointestinal acidification. Structural rearrangements of the capsid VP N-terminus, at the base of the 5-fold channel, demonstrate a disordering of a "basket" motif as pH decreases. These observations begin to unravel the molecular mechanism of HBoV infection and provide information for control strategies.

9.
J Virol ; 95(19): e0077321, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287038

RESUMO

Recombinant adeno-associated viruses (rAAVs) are one of the most commonly used vectors for a variety of gene therapy applications. In the last 2 decades, research focused primarily on the characterization and isolation of new cap, genes resulting in hundreds of natural and engineered AAV capsid variants, while the rep gene, the other major AAV open reading frame, has been less studied. This is due to the fact that the rep gene from AAV serotype 2 (AAV2) enables the single-stranded DNA packaging of recombinant genomes into most AAV serotype and engineered capsids. However, a major by-product of all vector productions is empty AAV capsids, lacking the encapsidated vector genome, especially for non-AAV2 vectors. Despite the packaging process being considered the rate-limiting step for rAAV production, none of the rep genes from the other AAV serotypes have been characterized for their packaging efficiency. Thus, in this study AAV2 rep was replaced with the rep gene of a select number of AAV serotypes. However, this led to a lowering of capsid protein expression, relative to the standard AAV2-rep system. In further experiments the 3' end of the AAV2 rep gene was reintroduced to promote increased capsid expression and a series of chimeras between the different AAV Rep proteins were generated and characterized for their vector genome packaging ability. The utilization of these novel Rep hybrids increased the percentage of genome containing (full) capsids approximately 2- to -4-fold for all of the non-AAV2 serotypes tested. Thus, these Rep chimeras could revolutionize rAAV production. IMPORTANCE A major by-product of all adeno-associated virus (AAV) vector production systems are "empty" capsids, void of the desired therapeutic gene, and thus do not provide any curative benefit for the treatment of the targeted disease. In fact, empty capsids can potentially elicit additional immune responses in vivo gene therapies if not removed by additional purification steps. Thus, there is a need to increase the genome packaging efficiency and reduce the number of empty capsids from AAV biologics. The novel Rep hybrids from different AAV serotypes described in this study are capable of reducing the percentage of empty capsids in all tested AAV serotypes and improve overall yields of genome-containing AAV capsids at the same time. They can likely be integrated easily into existing AAV manufacturing protocols to optimize the production of the generated AAV gene therapy products.


Assuntos
Proteínas do Capsídeo/genética , Dependovirus/genética , Genes Virais , Vetores Genéticos , Empacotamento do Genoma Viral , Proteínas Virais/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas de Ligação a DNA/genética , Dependovirus/metabolismo , Células HEK293 , Humanos , Proteínas Recombinantes de Fusão
10.
J Virol ; 95(23): e0124921, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549984

RESUMO

Recombinant adeno-associated virus (rAAV) vectors are one of the leading tools for the delivery of therapeutic genes in human gene therapy applications. For a successful transfer of their payload, the AAV vectors have to circumvent potential preexisting neutralizing host antibodies and bind to the receptors of the target cells. Both of these aspects have not been structurally analyzed for AAVrh.10. Here, cryo-electron microscopy and three-dimensional image reconstruction were used to map the binding site of sulfated N-acetyllactosamine (LacNAc; previously shown to bind AAVrh.10) and a series of four monoclonal antibodies (MAbs). LacNAc was found to bind to a pocket located on the side of the 3-fold capsid protrusion that is mostly conserved to AAV9 and equivalent to its galactose-binding site. As a result, AAVrh.10 was also shown to be able to bind to cell surface glycans with terminal galactose. For the antigenic characterization, it was observed that several anti-AAV8 MAbs cross-react with AAVrh.10. The binding sites of these antibodies were mapped to the 3-fold capsid protrusions. Based on these observations, the AAVrh.10 capsid surface was engineered to create variant capsids that escape these antibodies while maintaining infectivity. IMPORTANCE Gene therapy vectors based on adeno-associated virus rhesus isolate 10 (AAVrh.10) have been used in several clinical trials to treat monogenetic diseases. However, compared to other AAV serotypes little is known about receptor binding and antigenicity of the AAVrh.10 capsid. Particularly, preexisting neutralizing antibodies against capsids are an important challenge that can hamper treatment efficiency. This study addresses both topics and identifies critical regions of the AAVrh.10 capsid for receptor and antibody binding. The insights gained were utilized to generate AAVrh.10 variants capable of evading known neutralizing antibodies. The findings of this study could further aid the utilization of AAVrh.10 vectors in clinical trials and help the approval of the subsequent biologics.


Assuntos
Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Capsídeo/química , Dependovirus/metabolismo , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Células CHO , Capsídeo/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Cricetulus , Microscopia Crioeletrônica , Dependovirus/genética , Dependovirus/imunologia , Terapia Genética , Células HEK293 , Humanos , Imunoglobulina G , Modelos Moleculares , Polissacarídeos , Ligação Proteica
11.
J Struct Biol ; 213(4): 107795, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509611

RESUMO

Adeno-associated viruses (AAV) are utilized as gene transfer vectors in the treatment of monogenic disorders. A variant, rationally engineered based on natural AAV2 isolates, designated AAV-True Type (AAV-TT), is highly neurotropic compared to wild type AAV2 in vivo, and vectors based on it, are currently being evaluated for central nervous system applications. AAV-TT differs from AAV2 by 14 amino acids, including R585S and R588T, two residues previously shown to be essential for heparan sulfate binding of AAV2. The capsid structures of AAV-TT and AAV2 visualized by cryo-electron microscopy at 3.4 and 3.0 Å resolution, respectively, highlighted structural perturbations at specific amino acid differences. Differential scanning fluorimetry (DSF) performed at different pH conditions demonstrated that the melting temperature (Tm) of AAV2 was consistently ∼5 °C lower than AAV-TT, but both showed maximal stability at pH 5.5, corresponding to the pH in the late endosome, proposed as required for VP1u externalization to facilitate endosomal escape. Reintroduction of arginines at positions 585 and 588 in AAV-TT caused a reduction in Tm, demonstrating that the lack of basic amino acids at these positions are associated with capsid stability. These results provide structural and thermal annotation of AAV2/AAV-TT residue differences, that account for divergent cell binding, transduction, antigenic reactivity, and transduction of permissive tissues between the two viruses. Specifically, these data indicate that AAV-TT may not utilize a glycan receptor mediated pathway to enter cells and may have lower antigenic properties as compared to AAV2.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Dependovirus/genética , Vetores Genéticos/genética , Mutagênese Sítio-Dirigida , Animais , Sítios de Ligação/genética , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Dependovirus/química , Dependovirus/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Células Sf9 , Spodoptera , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura
12.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31826994

RESUMO

Adeno-associated viruses (AAVs) from clade E are often used as vectors in gene delivery applications. This clade includes rhesus isolate 10 (AAVrh.10) and 39 (AAVrh.39) which, unlike representative AAV8, are capable of crossing the blood-brain barrier (BBB), thereby enabling the delivery of therapeutic genes to the central nervous system. Here, the capsid structures of AAV8, AAVrh.10 and AAVrh.39 have been determined by cryo-electron microscopy and three-dimensional image reconstruction to 3.08-, 2.75-, and 3.39-Šresolution, respectively, to enable a direct structural comparison. AAVrh.10 and AAVrh.39 are 98% identical in amino acid sequence but only ∼93.5% identical to AAV8. However, the capsid structures of all three viruses are similar, with only minor differences observed in the previously described surface variable regions, suggesting that specific residues S269 and N472, absent in AAV8, may confer the ability to cross the BBB in AAVrh.10 and AAVrh.39. Head-to-head comparison of empty and genome-containing particles showed DNA ordered in the previously described nucleotide-binding pocket, supporting the suggested role of this pocket in DNA packaging for the Dependoparvovirus The structural characterization of these viruses provides a platform for future vector engineering efforts toward improved gene delivery success with respect to specific tissue targeting, transduction efficiency, antigenicity, or receptor retargeting.IMPORTANCE Recombinant adeno-associated virus vectors (rAAVs), based on AAV8 and AAVrh.10, have been utilized in multiple clinical trials to treat different monogenetic diseases. The closely related AAVrh.39 has also shown promise in vivo As recently attained for other AAV biologics, e.g., Luxturna and Zolgensma, based on AAV2 and AAV9, respectively, the vectors in this study will likely gain U.S. Food and Drug Administration approval for commercialization in the near future. This study characterized the capsid structures of these clinical vectors at atomic resolution using cryo-electron microscopy and image reconstruction for comparative analysis. The analysis suggested two key residues, S269 and N472, as determinants of BBB crossing for AAVrh.10 and AAVrh.39, a feature utilized for central nervous system delivery of therapeutic genes. The structure information thus provides a platform for engineering to improve receptor retargeting or tissue specificity. These are important challenges in the field that need attention. Capsid structure information also provides knowledge potentially applicable for regulatory product approval.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Capsídeo/química , Capsídeo/ultraestrutura , Dependovirus/química , Sequência de Aminoácidos , Barreira Hematoencefálica , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Dependovirus/genética , Terapia Genética , Vetores Genéticos , Células HEK293 , Humanos , Imageamento Tridimensional , Modelos Moleculares , Estados Unidos , United States Food and Drug Administration
13.
J Struct Biol ; 211(2): 107547, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32522552

RESUMO

Adeno-associated viruses (AAVs) are widespread among vertebrates. AAVs isolated from bats display low capsid protein sequence identities (<60%) to AAV2, AAV5, and other primate AAVs. Here we report the first capsid structure of a non-primate AAV which was isolated from bats. The capsid structure of BtAAV-10HB (10HB) was determined by cryo-electron microscopy and three-dimensional image reconstruction to 3.03 Å resolution. Comparison of empty and genome-containing capsids showed that the capsid structures are almost identical except for an ordered nucleotide in a previously described nucleotide-binding pocket, the density in the 5-fold channel, and several amino acids with altered side chain conformations. Compared to other dependoparvoviruses, for example AAV2 and AAV5, 10HB displays unique structural features including insertions and deletions in capsid surface loops. Overall, the 10HB capsid structure superposes with an RMSD of 1.7 Å and 1.8 Å to AAV2 and AAV5, respectively. Currently all approved AAV human gene therapy biologics and vectors in clinical trials are based on primate isolates. However, pre-existing neutralizing antibodies in the human population represents a hurdle to their use. 10HB capsids are capable of packaging AAV2 vector genomes and thus have potential as gene delivery vectors. Significantly, a screen with human sera showed lack of recognition by the 10HB capsid. Thus, the different capsid surface of 10HB vectors likely renders it "invisible" to potential pre-existing neutralizing human anti-AAV antibodies especially because this virus or similar variants do not exist in primate populations.


Assuntos
Proteínas do Capsídeo/ultraestrutura , Capsídeo/ultraestrutura , Quirópteros/virologia , Dependovirus/ultraestrutura , Animais , Proteínas do Capsídeo/genética , Quirópteros/genética , Microscopia Crioeletrônica , Dependovirus/genética , Humanos , Modelos Moleculares , Ligação Proteica/genética
14.
J Virol ; 93(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30333169

RESUMO

Adeno-associated virus serotype 5 (AAV5) is being developed as a gene delivery vector for several diseases, including hemophilia and Huntington's disease, and has a demonstrated efficient transduction in liver, lung, skeletal muscle, and the central nervous system. One limitation of AAV gene delivery is preexisting neutralizing antibodies, which present a significant challenge for vector effectiveness in therapeutic applications. Here, we report the cryo-electron microscopy (cryo-EM) and image-reconstructed structure of AAV5 in complex with a newly generated monoclonal antibody, HL2476, at 3.1-Å resolution. Unlike other available anti-AAV5 capsid antibodies, ADK5a and ADK5b, with epitopes surrounding the 5-fold channel of the capsid, HL2476 binds to the 3-fold protrusions. To elucidate the capsid-antibody interactions, the heavy and light chains were sequenced and their coordinates, along with the AAV5 viral protein, assigned to the density map. The high resolution of the complex enabled the identification of interacting residues at the 3-fold protrusions of the capsid, including R483, which forms two hydrogen bonds with the light chain of HL2476. A panel of AAV5 variants was generated and analyzed by native dot immunoblot and transduction assays. This identified variants with antibody escape phenotypes that maintain infectivity.IMPORTANCE Biologics based on recombinant AAVs (rAAVs) are increasingly becoming attractive human gene delivery vehicles, especially after the approval of Glybera in Europe and Luxturna in the United States. However, preexisting neutralizing antibodies against the AAV capsids in a large percentage of the human population limit wide-spread utilization of these vectors. To circumvent this problem, stealth vectors must be generated that are undetectable by these antibodies. This study details the high-resolution characterization of a new antigenic region on AAV5, a vector being developed for numerous delivery applications. The structure of AAV5 complexed with HL2476, a novel antibody, was determined by cryo-EM to 3.1-Å resolution. The resolution of the density map enabled the identification of interacting residues between capsid and antibody and the determinants of neutralization. Thus, the information obtained from this study can facilitate the generation of host immune escape vectors.


Assuntos
Anticorpos Monoclonais/metabolismo , Capsídeo/química , Epitopos/imunologia , Parvovirinae/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Capsídeo/imunologia , Microscopia Crioeletrônica , Dependovirus , Feminino , Células HEK293 , Humanos , Ligação de Hidrogênio , Camundongos , Parvovirinae/química , Engenharia de Proteínas
15.
J Struct Biol ; 203(3): 236-241, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29775653

RESUMO

AAV2.5 represents the first structure-guided in-silico designed Adeno-associated virus (AAV) gene delivery vector. This engineered vector combined the receptor attachment properties of AAV serotype 2 (AAV2) with the muscle tropic properties of AAV1, and exhibited an antibody escape phenotype because of a modified antigenic epitope. To confirm the design, the structure of the vector was determined to a resolution of 2.78 Šusing cryo-electron microscopy and image reconstruction. The structure of the major viral protein (VP), VP3, was ordered from residue 219 to 736, as reported for other AAV structures, and the five AAV2.5 residues exchanged from AAV2 to AAV1, Q263A, T265 (insertion), N706A, V709A, and T717N, were readily interpretable. Significantly, the surface loops containing these residues adopt the AAV1 conformation indicating the importance of amino acid residues in dictating VP structure.


Assuntos
Microscopia Crioeletrônica/métodos , Técnicas de Transferência de Genes , Vetores Genéticos/ultraestrutura , Parvovirinae/ultraestrutura , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Dependovirus , Epitopos/química , Epitopos/ultraestrutura , Terapia Genética , Vetores Genéticos/química , Vetores Genéticos/genética , Humanos , Parvovirinae/química , Parvovirinae/genética , Ligação Proteica
16.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331084

RESUMO

Bocaparvoviruses are emerging pathogens of the Parvoviridae family. Human bocavirus 1 (HBoV1) causes severe respiratory infections and HBoV2 to HBoV4 cause gastrointestinal infections in young children. Recent reports of life-threatening cases, lack of direct treatment or vaccination, and a limited understanding of their disease mechanisms highlight the need to study these pathogens on a molecular and structural level for the development of therapeutics. Toward this end, the capsid structures of HBoV1, HBoV3, and HBoV4 were determined to a resolution of 2.8 to 3.0 Å by cryo-electron microscopy and three-dimensional image reconstruction. The bocaparvovirus capsids, which display different tissue tropisms, have features in common with other parvoviruses, such as depressions at the icosahedral 2-fold symmetry axis and surrounding the 5-fold symmetry axis, protrusions surrounding the 3-fold symmetry axis, and a channel at the 5-fold symmetry axis. However, unlike other parvoviruses, densities extending the 5-fold channel into the capsid interior are conserved among the bocaparvoviruses and are suggestive of a genus-specific function. Additionally, their major viral protein 3 contains loops with variable regions at their apexes conferring capsid surface topologies different from those of other parvoviruses. Structural comparisons at the strain (HBoV) and genus (bovine parvovirus and HBoV) levels identified differences in surface loops that are functionally important in host/tissue tropism, pathogenicity, and antigenicity in other parvoviruses and likely play similar roles in these viruses. This study thus provides a structural framework to characterize determinants of host/tissue tropism, pathogenicity, and antigenicity for the development of antiviral strategies to control human bocavirus infections.IMPORTANCE Human bocaviruses are one of only a few members of the Parvoviridae family pathogenic to humans, especially young children and immunocompromised adults. There are currently no treatments or vaccines for these viruses or the related enteric bocaviruses. This study obtained the first high-resolution structures of three human bocaparvoviruses determined by cryo-reconstruction. HBoV1 infects the respiratory tract, and HBoV3 and HBoV4 infect the gastrointestinal tract, tissues that are likely targeted by the capsid. Comparison of these viruses provides information on conserved bocaparvovirus-specific features and variable regions resulting in unique surface topologies that can serve as guides to characterize HBoV determinants of tissue tropism and antigenicity in future experiments. Based on the comparison to other existing parvovirus capsid structures, this study suggests capsid regions that likely control successful infection, including determinants of receptor attachment, host cell trafficking, and antigenic reactivity. Overall, these observations could impact efforts to design antiviral strategies and vaccines for HBoVs.


Assuntos
Capsídeo/química , Capsídeo/ultraestrutura , Bocavirus Humano/química , Bocavirus Humano/ultraestrutura , Bocavirus/química , Proteínas do Capsídeo/análise , Microscopia Crioeletrônica , Humanos , Imageamento Tridimensional , Proteínas Virais , Tropismo Viral
17.
J Virol ; 90(19): 8542-51, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440903

RESUMO

UNLABELLED: The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the ßA strand region under the icosahedral 2-fold axis rather than antiparallel to the ßB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. IMPORTANCE: The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid-Rep interaction. Understanding this mechanism may aid in the improvement of AAV packaging efficiency, which is currently ∼1:10 (10%) genome packaged to empty capsid in vector preparations. This report identifies regions of the AAV capsid that play roles in genome packaging and that may be important for Rep recognition. It also demonstrates the need to maintain capsid stability for the success of this process. This information is important for efforts to improve AAV genome packaging and will also inform the engineering of AAV capsid variants for improved tropism, specific tissue targeting, and host antibody escape by defining amino acids that cannot be altered without detriment to infectious vector production.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Dependovirus/fisiologia , Dependovirus/ultraestrutura , Montagem de Vírus , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Imageamento Tridimensional , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Ligação Proteica , Mapeamento de Interação de Proteínas , Vírion/química , Vírion/efeitos da radiação
18.
J Virol ; 90(9): 4670-4680, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912619

RESUMO

UNLABELLED: Human bocaviruses (HBoV1 to -4) are emerging pathogens associated with pneumonia and/or diarrhea in young children. Currently, there is no treatment or vaccination, so there is a need to study these pathogens to understand their disease mechanisms on a molecular and structural level for the development of control strategies. Here, we report the structures of six HBoV monoclonal antibody (MAb) fragment complexes, HBoV1-15C6, HBoV2-15C6, HBoV4-15C6, HBoV1-4C2, HBoV1-9G12, and HBoV1-12C1, determined by cryo-electron microscopy and three-dimensional image reconstruction to 18.0- to 8.5-Å resolution. Of these, the 15C6 MAb cross-reacted with HBoV1, HBoV2, and HBoV4, while the 4C2, 12C1, and 9G12 MAbs recognized only HBoV1. Pseudoatomic modeling mapped the 15C6 footprint to the capsid surface DE and HI loops, at the 5-fold axis and the depression surrounding it, respectively, which are conserved motifs in Parvoviridae The footprints for 4C2, 12C1, and 9G12 span the surface loops that assemble portions of the 2-/5-fold wall (a raised surface feature between the 2-fold and 5-fold axes of symmetry) and the shoulder of the 3-fold protrusions. The MAb footprints, cross reactive and strain specific, coincide with regions with high and low sequence/structural identities, respectively, on the capsid surfaces of the HBoVs and identify potential regions for the development of peptide vaccines for these viruses. IMPORTANCE: Human bocaviruses (HBoVs) may cause severe respiratory and gastrointestinal infections in young children. The nonenveloped parvovirus capsid carries determinants of host and tissue tropism, pathogenicity, genome packaging, assembly, and antigenicity important for virus infection. This information is currently unavailable for the HBoVs and other bocaparvoviruses. This study identifies three strain-specific antigenic epitopes on the HBoV1 capsid and a cross-reactive epitope on the HBoV1, HBoV2, and HBoV4 capsids using structures of capsid-antibody complexes determined using cryo-electron microscopy and image reconstruction. This is the first study to report the highly conserved parvovirus DE loop at the 5-fold axis as a determinant of antigenicity. Additionally, knowledge of the strain-specific and conserved antigenic epitopes of the bocaviruses can be instrumental in characterization of the virus life cycle, development of peptide vaccines, and generation of gene delivery vectors for cystic fibrosis given the strict tropism of HBoV1 for human airway epithelial cells.


Assuntos
Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Capsídeo/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Bocavirus Humano/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Reações Cruzadas/imunologia , Microscopia Crioeletrônica , Mapeamento de Epitopos/métodos , Bocavirus Humano/ultraestrutura , Humanos , Imageamento Tridimensional , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Infecções por Parvoviridae/virologia , Ligação Proteica/imunologia , Conformação Proteica
19.
J Virol ; 89(5): 2603-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520501

RESUMO

UNLABELLED: Bovine parvovirus (BPV), the causative agent of respiratory and gastrointestinal disease in cows, is the type member of the Bocaparvovirus genus of the Parvoviridae family. Toward efforts to obtain a template for the development of vaccines and small-molecule inhibitors for this pathogen, the structure of the BPV capsid, assembled from the major capsid viral protein 2 (VP2), was determined using X-ray crystallography as well as cryo-electron microscopy and three-dimensional image reconstruction (cryo-reconstruction) to 3.2- and 8.8-Å resolutions, respectively. The VP2 region ordered in the crystal structure, from residues 39 to 536, conserves the parvoviral eight-stranded jellyroll motif and an αA helix. The BPV capsid displays common parvovirus features: a channel at and depressions surrounding the 5-fold axes and protrusions surrounding the 3-fold axes. However, rather than a depression centered at the 2-fold axes, a raised surface loop divides this feature in BPV. Additional observed density in the capsid interior in the cryo-reconstructed map, compared to the crystal structure, is interpreted as 10 additional N-terminal residues, residues 29 to 38, that radially extend the channel under the 5-fold axis, as observed for human bocavirus 1 (HBoV1). Surface loops of various lengths and conformations extend from the core jellyroll motif of VP2. These loops confer the unique surface topology of the BPV capsid, making it strikingly different from HBoV1 as well as the type members of other Parvovirinae genera for which structures have been determined. For the type members, regions structurally analogous to those decorating the BPV capsid surface serve as determinants of receptor recognition, tissue and host tropism, pathogenicity, and antigenicity. IMPORTANCE: Bovine parvovirus (BPV), identified in the 1960s in diarrheic calves, is the type member of the Bocaparvovirus genus of the nonenveloped, single-stranded DNA (ssDNA) Parvoviridae family. The recent isolation of human bocaparvoviruses from children with severe respiratory and gastrointestinal infections has generated interest in understanding the life cycle and pathogenesis of these emerging viruses. We have determined the high-resolution structure of the BPV capsid assembled from its predominant capsid protein VP2, known to be involved in a myriad of functions during host cell entry, pathogenesis, and antigenicity for other members of the Parvovirinae. Our results show the conservation of the core secondary structural elements and the location of the N-terminal residues for the known bocaparvovirus capsid structures. However, surface loops with high variability in sequence and conformation give BPV a unique capsid surface topology. Similar analogous regions in other Parvovirinae type members are important as determinants of receptor recognition, tissue and host tropism, pathogenicity, and antigenicity.


Assuntos
Bocavirus/química , Bocavirus/ultraestrutura , Capsídeo/química , Capsídeo/ultraestrutura , Animais , Bovinos , Microscopia Crioeletrônica , Cristalografia por Raios X , Imageamento Tridimensional
20.
J Virol ; 89(3): 1794-808, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410874

RESUMO

UNLABELLED: The clinical utility of the adeno-associated virus (AAV) gene delivery system has been validated by the regulatory approval of an AAV serotype 1 (AAV1) vector for the treatment of lipoprotein lipase deficiency. However, neutralization from preexisting antibodies is detrimental to AAV transduction efficiency. Hence, mapping of AAV antigenic sites and engineering of neutralization-escaping vectors are important for improving clinical efficacy. We report the structures of four AAV-monoclonal antibody fragment complexes, AAV1-ADK1a, AAV1-ADK1b, AAV5-ADK5a, and AAV5-ADK5b, determined by cryo-electron microscopy and image reconstruction to a resolution of ∼11 to 12 Å. Pseudoatomic modeling mapped the ADK1a epitope to the protrusions surrounding the icosahedral 3-fold axis and the ADK1b and ADK5a epitopes, which overlap, to the wall between depressions at the 2- and 5-fold axes (2/5-fold wall), and the ADK5b epitope spans both the 5-fold axis-facing wall of the 3-fold protrusion and portions of the 2/5-fold wall of the capsid. Combined with the six antigenic sites previously elucidated for different AAV serotypes through structural approaches, including AAV1 and AAV5, this study identified two common AAV epitopes: one on the 3-fold protrusions and one on the 2/5-fold wall. These epitopes coincide with regions with the highest sequence and structure diversity between AAV serotypes and correspond to regions determining receptor recognition and transduction phenotypes. Significantly, these locations overlap the two dominant epitopes reported for autonomous parvoviruses. Thus, rather than the amino acid sequence alone, the antigenic sites of parvoviruses appear to be dictated by structural features evolved to enable specific infectious functions. IMPORTANCE: The adeno-associated viruses (AAVs) are promising vectors for in vivo therapeutic gene delivery, with more than 20 years of intense research now realized in a number of successful human clinical trials that report therapeutic efficacy. However, a large percentage of the population has preexisting AAV capsid antibodies and therefore must be excluded from clinical trials or vector readministration. This report represents our continuing efforts to understand the antigenic structure of the AAVs, specifically, to obtain a picture of "polyclonal" reactivity as is the situation in humans. It describes the structures of four AAV-antibody complexes determined by cryo-electron microscopy and image reconstruction, increasing the number of mapped epitopes to four and three, respectively, for AAV1 and AAV5, two vectors currently in clinical trials. The results presented provide information essential for generating antigenic escape vectors to overcome a critical challenge remaining in the optimization of this highly promising vector delivery system.


Assuntos
Anticorpos Antivirais/imunologia , Dependovirus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Microscopia Crioeletrônica , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Processamento de Imagem Assistida por Computador , Substâncias Macromoleculares/ultraestrutura , Modelos Moleculares , Ligação Proteica , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA