Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207626

RESUMO

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Assuntos
Relógios Circadianos , Proteínas Circadianas Period , Animais , Humanos , Fosforilação , Retroalimentação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Serina/metabolismo , Mamíferos/metabolismo
2.
Cell ; 145(3): 357-70, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21514639

RESUMO

The speed of circadian clocks in animals is tightly linked to complex phosphorylation programs that drive daily cycles in the levels of PERIOD (PER) proteins. Using Drosophila, we identify a time-delay circuit based on hierarchical phosphorylation that controls the daily downswing in PER abundance. Phosphorylation by the NEMO/NLK kinase at the "per-short" domain on PER stimulates phosphorylation by DOUBLETIME (DBT/CK1δ/ɛ) at several nearby sites. This multisite phosphorylation operates in a spatially oriented and graded manner to delay progressive phosphorylation by DBT at other more distal sites on PER, including those required for recognition by the F box protein SLIMB/ß-TrCP and proteasomal degradation. Highly phosphorylated PER has a more open structure, suggesting that progressive increases in global phosphorylation contribute to the timing mechanism by slowly increasing PER susceptibility to degradation. Our findings identify NEMO as a clock kinase and demonstrate that long-range interactions between functionally distinct phospho-clusters collaborate to set clock speed.


Assuntos
Relógios Circadianos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Circadianas Period/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caseína Quinase 1 épsilon/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Drosophila melanogaster/metabolismo , Dados de Sequência Molecular , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo
3.
PLoS Genet ; 19(2): e1010649, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809369

RESUMO

Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila. In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. These conclusions are further supported by elevated BRM binding to the per promoter in flies subjected to constant light and experiments in Drosophila tissue culture in which the levels of CLK and TIM are manipulated. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex.


Assuntos
Proteínas de Drosophila , Regulação da Expressão Gênica , Animais , Cromatina , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Drosophila/genética , Proteínas de Drosophila/genética
4.
J Biol Chem ; 300(2): 105616, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159854

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.


Assuntos
Relógios Circadianos , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Animais , Acetilglucosamina/metabolismo , Relógios Circadianos/fisiologia , Açúcares de Uridina Difosfato/metabolismo , Humanos
5.
PLoS Biol ; 20(9): e3001796, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070295

RESUMO

Animals adapt their seasonal physiology by measuring photoperiodic changes over the calendar year. A new study in PLOS Biology uncovers changes in glutamate dynamics in the bean bug that are dependent on photoperiod and a clock gene.


Assuntos
Ácido Glutâmico , Fotoperíodo , Animais , Encéfalo , Reprodução , Estações do Ano
6.
Genes Dev ; 30(15): 1761-75, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27542830

RESUMO

Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding.


Assuntos
Ritmo Circadiano/genética , Códon/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Animais , Retroalimentação Fisiológica , Fosforilação , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-37584703

RESUMO

Organisms adapt to unfavorable seasonal conditions to survive. These seasonal adaptations rely on the correct interpretation of environmental cues such as photoperiod, and temperature. Genetic studies in several organisms, including the genetic powerhouse Drosophila melanogaster, indicate that circadian clock components, such as period and timeless, are involved in photoperiodic-dependent seasonal adaptations, but our understanding of this process is far from complete. In particular, the role of temperature as a key factor to complement photoperiodic response is not well understood. The development of new sequencing technologies has proven extremely useful in understanding the plastic changes that the clock and other cellular components undergo in different environmental conditions, including changes in gene expression and alternative splicing. This article discusses the integration of photoperiod and temperature for seasonal biology as well as downstream molecular and cellular pathways involved in the regulation of physiological adaptations that occur with changing seasons. We focus our discussion on the current understanding of the involvement of the molecular clock and the circadian clock neuronal circuits in these adaptations in D. melanogaster.

8.
Proc Natl Acad Sci U S A ; 117(26): 15293-15304, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541062

RESUMO

Organisms possess photoperiodic timing mechanisms to detect variations in day length and temperature as the seasons progress. The nature of the molecular mechanisms interpreting and signaling these environmental changes to elicit downstream neuroendocrine and physiological responses are just starting to emerge. Here, we demonstrate that, in Drosophila melanogaster, EYES ABSENT (EYA) acts as a seasonal sensor by interpreting photoperiodic and temperature changes to trigger appropriate physiological responses. We observed that tissue-specific genetic manipulation of eya expression is sufficient to disrupt the ability of flies to sense seasonal cues, thereby altering the extent of female reproductive dormancy. Specifically, we observed that EYA proteins, which peak at night in short photoperiod and accumulate at higher levels in the cold, promote reproductive dormancy in female D. melanogaster Furthermore, we provide evidence indicating that the role of EYA in photoperiodism and temperature sensing is aided by the stabilizing action of the light-sensitive circadian clock protein TIMELESS (TIM). We postulate that increased stability and level of TIM at night under short photoperiod together with the production of cold-induced and light-insensitive TIM isoforms facilitate EYA accumulation in winter conditions. This is supported by our observations that tim null mutants exhibit reduced incidence of reproductive dormancy in simulated winter conditions, while flies overexpressing tim show an increased incidence of reproductive dormancy even in long photoperiod.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas do Olho/metabolismo , Fotoperíodo , Estações do Ano , Temperatura , Animais , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Reprodução
9.
Mol Biol Evol ; 38(6): 2532-2546, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33586767

RESUMO

Studying how novel phenotypes originate and evolve is fundamental to the field of evolutionary biology as it allows us to understand how organismal diversity is generated and maintained. However, determining the basis of novel phenotypes is challenging as it involves orchestrated changes at multiple biological levels. Here, we aim to overcome this challenge by using a comparative species framework combining behavioral, gene expression, and genomic analyses to understand the evolutionary novel egg-laying substrate-choice behavior of the invasive pest species Drosophila suzukii. First, we used egg-laying behavioral assays to understand the evolution of ripe fruit oviposition preference in D. suzukii compared with closely related species D. subpulchrella and D. biarmipes as well as D. melanogaster. We show that D. subpulchrella and D. biarmipes lay eggs on both ripe and rotten fruits, suggesting that the transition to ripe fruit preference was gradual. Second, using two-choice oviposition assays, we studied how D. suzukii, D. subpulchrella, D. biarmipes, and D. melanogaster differentially process key sensory cues distinguishing ripe from rotten fruit during egg-laying. We found that D. suzukii's preference for ripe fruit is in part mediated through a species-specific preference for stiff substrates. Last, we sequenced and annotated a high-quality genome for D. subpulchrella. Using comparative genomic approaches, we identified candidate genes involved in D. suzukii's ability to seek out and target ripe fruits. Our results provide detail to the stepwise evolution of pest activity in D. suzukii, indicating important cues used by this species when finding a host, and the molecular mechanisms potentially underlying their adaptation to a new ecological niche.


Assuntos
Evolução Biológica , Drosophila/genética , Genoma de Inseto , Oviposição , Sensação , Adaptação Biológica , Animais , Sinais (Psicologia) , Drosophila/metabolismo , Feminino , Frutas , Espécies Introduzidas , Seleção Genética , Células Receptoras Sensoriais/metabolismo , Especificidade da Espécie
10.
PLoS Genet ; 15(11): e1008475, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710605

RESUMO

Circadian rhythms are generated by endogenous pacemakers that rely on transcriptional-translational feedback mechanisms conserved among species. In Drosophila, the stability of a key pacemaker protein PERIOD (PER) is tightly controlled by changes in phosphorylation status. A number of molecular players have been implicated in PER destabilization by promoting PER progressive phosphorylation. On the other hand, there have been few reports describing mechanisms that stabilize PER by delaying PER hyperphosphorylation. Here we report that the protein Suppressor of Ras (SUR-8) regulates circadian locomotor rhythms by stabilizing PER. Depletion of SUR-8 from circadian neurons lengthened the circadian period by about 2 hours and decreased PER abundance, whereas its overexpression led to arrhythmia and an increase in PER. Specifically SUR-8 promotes the stability of PER through phosphorylation regulation. Interestingly, downregulation of the protein phosphatase 1 catalytic subunit PP1-87B recapitulated the phenotypes of SUR-8 depletion. We found that SUR-8 facilitates interactions between PP1-87B and PER. Depletion of SUR-8 decreased the interaction of PER and PP1-87B, which supports the role of SUR-8 as a scaffold protein. Interestingly, the interaction between SUR-8 and PER is temporally regulated: SUR-8 has more binding to PER at night than morning. Thus, our results indicate that SUR-8 interacts with PP1-87B to control PER stability to regulate circadian rhythms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Proteínas Circadianas Period/genética , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 1/genética , Animais , Domínio Catalítico/genética , Drosophila melanogaster/genética , Neurônios/metabolismo , Fosforilação
11.
PLoS Genet ; 15(1): e1007953, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703153

RESUMO

Circadian clocks coordinate time-of-day-specific metabolic and physiological processes to maximize organismal performance and fitness. In addition to light and temperature, which are regarded as strong zeitgebers for circadian clock entrainment, metabolic input has now emerged as an important signal for clock entrainment and modulation. Circadian clock proteins have been identified to be substrates of O-GlcNAcylation, a nutrient sensitive post-translational modification (PTM), and the interplay between clock protein O-GlcNAcylation and other PTMs is now recognized as an important mechanism by which metabolic input regulates circadian physiology. To better understand the role of O-GlcNAcylation in modulating clock protein function within the molecular oscillator, we used mass spectrometry proteomics to identify O-GlcNAcylation sites of PERIOD (PER), a repressor of the circadian transcriptome and a critical biochemical timer of the Drosophila clock. In vivo functional characterization of PER O-GlcNAcylation sites indicates that O-GlcNAcylation at PER(S942) reduces interactions between PER and CLOCK (CLK), the key transcriptional activator of clock-controlled genes. Since we observe a correlation between clock-controlled daytime feeding activity and higher level of PER O-GlcNAcylation, we propose that PER(S942) O-GlcNAcylation during the day functions to prevent premature initiation of circadian repression phase. This is consistent with the period-shortening behavioral phenotype of per(S942A) flies. Taken together, our results support that clock-controlled feeding activity provides metabolic signals to reinforce light entrainment to regulate circadian physiology at the post-translational level. The interplay between O-GlcNAcylation and other PTMs to regulate circadian physiology is expected to be complex and extensive, and reach far beyond the molecular oscillator.


Assuntos
Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Proteínas Circadianas Period/genética , Animais , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Processamento de Proteína Pós-Traducional/genética
12.
PLoS Genet ; 15(10): e1008474, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658266

RESUMO

Circadian clocks control daily rhythms in behavior and physiology. In Drosophila, the small ventral lateral neurons (sLNvs) expressing PIGMENT DISPERSING FACTOR (PDF) are the master pacemaker neurons generating locomotor rhythms. Despite the importance of sLNvs and PDF in circadian behavior, little is known about factors that control sLNvs maintenance and PDF accumulation. Here, we identify the Drosophila SWI2/SNF2 protein DOMINO (DOM) as a key regulator of circadian behavior. Depletion of DOM in circadian neurons eliminates morning anticipatory activity under light dark cycle and impairs behavioral rhythmicity in constant darkness. Interestingly, the two major splice variants of DOM, DOM-A and DOM-B have distinct circadian functions. DOM-A depletion mainly leads to arrhythmic behavior, while DOM-B knockdown lengthens circadian period without affecting the circadian rhythmicity. Both DOM-A and DOM-B bind to the promoter regions of key pacemaker genes period and timeless, and regulate their protein expression. However, we identify that only DOM-A is required for the maintenance of sLNvs and transcription of pdf. Lastly, constitutive activation of PDF-receptor signaling rescued the arrhythmia and period lengthening of DOM downregulation. Taken together, our findings reveal that two splice variants of DOM play distinct roles in circadian rhythms through regulating abundance of pacemaker proteins and sLNvs maintenance.


Assuntos
Relógios Biológicos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Fatores de Transcrição/genética , Núcleos Ventrais do Tálamo/fisiologia , Processamento Alternativo , Animais , Animais Geneticamente Modificados , Técnicas de Observação do Comportamento , Comportamento Animal , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Núcleos Ventrais do Tálamo/citologia
13.
J Neurosci ; 38(50): 10631-10643, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30373768

RESUMO

The animal circadian timing system interprets environmental time cues and internal metabolic status to orchestrate circadian rhythms of physiology, allowing animals to perform necessary tasks in a time-of-day-dependent manner. Normal progression of circadian rhythms is dependent on the daily cycling of core transcriptional factors that make up cell-autonomous molecular oscillators. In Drosophila, PERIOD (PER), TIMELESS (TIM), CLOCK (CLK), and CYCLE (CYC) are core clock proteins that function in a transcriptional-translational feedback mechanism to regulate the circadian transcriptome. Posttranslational modifications of core clock proteins provide precise temporal control over when they are active as regulators of clock-controlled genes. In particular, phosphorylation is a key regulatory mechanism that dictates the subcellular localization, stability, and transcriptional activity of clock proteins. Previously, casein kinase 1α (CK1α) has been identified as a kinase that phosphorylates mammalian PER1 and modulates its stability, but the mechanisms by which it modulates PER protein stability is still unclear. Using Drosophila as a model, we show that CK1α has an overall function of speeding up PER metabolism and is required to maintain the 24 h period of circadian rhythms. Our results indicate that CK1α collaborates with the key clock kinase DOUBLETIME (DBT) in both the cytoplasm and the nucleus to regulate the timing of PER-dependent repression of the circadian transcriptome. Specifically, we observe that CK1α promotes PER nuclear localization by antagonizing the activity of DBT to inhibit PER nuclear translocation. Furthermore, CK1α enhances DBT-dependent PER phosphorylation and degradation once PER moves into the nucleus.SIGNIFICANCE STATEMENT Circadian clocks are endogenous timers that integrate environmental signals to impose temporal control over organismal physiology over the 24 h day/night cycle. To maintain the 24 h period length of circadian clocks and to ensure that circadian rhythms are in synchrony with the external environment, key proteins that make up the molecular oscillator are extensively regulated by phosphorylation to ensure that they perform proper time-of-day-specific functions. Casein kinase 1α (CK1α) has previously been identified as a kinase that phosphorylates mammalian PERIOD (PER) proteins to promote their degradation, but the mechanism by which it modulates PER stability is unclear. In this study, we characterize the mechanisms by which CK1α interacts with DOUBLETIME (DBT) to achieve the overall function of speeding up PER metabolism and to ensure proper time-keeping.


Assuntos
Proteínas CLOCK/fisiologia , Caseína Quinase 1 épsilon/fisiologia , Caseína Quinase Ialfa/fisiologia , Relógios Circadianos/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas Circadianas Period/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila , Locomoção/fisiologia , Masculino
14.
BMC Genomics ; 20(1): 204, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866822

RESUMO

BACKGROUND: In the summer of 2013, Aedes aegypti Linnaeus was first detected in three cities in central California (Clovis, Madera and Menlo Park). It has now been detected in multiple locations in central and southern CA as far south as San Diego and Imperial Counties. A number of published reports suggest that CA populations have been established from multiple independent introductions. RESULTS: Here we report the first population genomics analyses of Ae. aegypti based on individual, field collected whole genome sequences. We analyzed 46 Ae. aegypti genomes to establish genetic relationships among populations from sites in California, Florida and South Africa. Based on 4.65 million high quality biallelic SNPs, we identified 3 major genetic clusters within California; one that includes all sample sites in the southern part of the state (South of Tehachapi mountain range) plus the town of Exeter in central California and two additional clusters in central California. CONCLUSIONS: A lack of concordance between mitochondrial and nuclear genealogies suggests that the three founding populations were polymorphic for two main mitochondrial haplotypes prior to being introduced to California. One of these has been lost in the Clovis populations, possibly by a founder effect. Genome-wide comparisons indicate extensive differentiation between genetic clusters. Our observations support recent introductions of Ae. aegypti into California from multiple, genetically diverged source populations. Our data reveal signs of hybridization among diverged populations within CA. Genetic markers identified in this study will be of great value in pursuing classical population genetic studies which require larger sample sizes.


Assuntos
Aedes/classificação , Genoma de Inseto , Sequenciamento Completo do Genoma/veterinária , Aedes/genética , Animais , California , Evolução Molecular , Variação Genética , Genética Populacional , Tamanho do Genoma , Espécies Introduzidas , Metagenômica , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Filogenia , Filogeografia
15.
PLoS Genet ; 11(7): e1005307, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26132408

RESUMO

Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ritmo Circadiano/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Transativadores/metabolismo , Transcrição Gênica/genética , Animais , Sítios de Ligação/genética , Proteínas CLOCK/genética , Linhagem Celular , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , RNA Polimerase II/genética
16.
BMC Bioinformatics ; 18(1): 310, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28633662

RESUMO

BACKGROUND: Identifying orthologous genes is an initial step required for phylogenetics, and it is also a common strategy employed in functional genetics to find candidates for functionally equivalent genes across multiple species. At the same time, in silico orthology prediction tools often require large computational resources only available on computing clusters. Here we present OrthoReD, an open-source orthology prediction tool with accuracy comparable to published tools that requires only a desktop computer. The low computational resource requirement of OrthoReD is achieved by repeating orthology searches on one gene of interest at a time, thereby generating a reduced dataset to limit the scope of orthology search for each gene of interest. RESULTS: The output of OrthoReD was highly similar to the outputs of two other published orthology prediction tools, OrthologID and/or OrthoDB, for the three dataset tested, which represented three phyla with different ranges of species diversity and different number of genomes included. Median CPU time for ortholog prediction per gene by OrthoReD executed on a desktop computer was <15 min even for the largest dataset tested, which included all coding sequences of 100 bacterial species. CONCLUSIONS: With high-throughput sequencing, unprecedented numbers of genes from non-model organisms are available with increasing need for clear information about their orthologies and/or functional equivalents in model organisms. OrthoReD is not only fast and accurate as an orthology prediction tool, but also gives researchers flexibility in the number of genes analyzed at a time, without requiring a high-performance computing cluster.


Assuntos
Software , Actinobacteria/genética , Actinobacteria/metabolismo , Animais , Bases de Dados Factuais , Drosophila/genética , Drosophila/metabolismo , Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Magnoliopsida/genética , Magnoliopsida/metabolismo , Transcriptoma
17.
Mol Biol Evol ; 32(2): 334-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25351750

RESUMO

Whether coding or regulatory sequence change is more important to the evolution of phenotypic novelty is one of biology's major unresolved questions. The field of evo-devo has shown that in early development changes to regulatory regions are the dominant mode of genetic change, but whether this extends to the evolution of novel phenotypes in the adult organism is unclear. Here, we conduct ten RNA-Seq experiments across both novel and conserved tissues in the honey bee to determine to what extent postdevelopmental novelty is based on changes to the coding regions of genes. We make several discoveries. First, we show that with respect to novel physiological functions in the adult animal, positively selected tissue-specific genes of high expression underlie novelty by conferring specialized cellular functions. Such genes are often, but not always taxonomically restricted genes (TRGs). We further show that positively selected genes, whether TRGs or conserved genes, are the least connected genes within gene expression networks. Overall, this work suggests that the evo-devo paradigm is limited, and that the evolution of novelty, postdevelopment, follows additional rules. Specifically, evo-devo stresses that high network connectedness (repeated use of the same gene in many contexts) constrains coding sequence change as it would lead to negative pleiotropic effects. Here, we show that in the adult animal, the converse is true: Genes with low network connectedness (TRGs and tissue-specific conserved genes) underlie novel phenotypes by rapidly changing coding sequence to perform new-specialized functions.


Assuntos
Abelhas/classificação , Abelhas/genética , Animais , Evolução Biológica
18.
BMC Ecol ; 16: 11, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27001084

RESUMO

BACKGROUND: As global climate change and exponential human population growth intensifies pressure on agricultural systems, the need to effectively manage invasive insect pests is becoming increasingly important to global food security. Drosophila suzukii is an invasive pest that drastically expanded its global range in a very short time since 2008, spreading to most areas in North America and many countries in Europe and South America. Preliminary ecological modeling predicted a more restricted distribution and, for this reason, the invasion of D. suzukii to northern temperate regions is especially unexpected. Investigating D. suzukii phenology and seasonal adaptations can lead to a better understanding of the mechanisms through which insects express phenotypic plasticity, which likely enables invasive species to successfully colonize a wide range of environments. RESULTS: We describe seasonal phenotypic plasticity in field populations of D. suzukii. Specifically, we observed a trend of higher proportions of flies with the winter morph phenotype, characterized by darker pigmentation and longer wing length, as summer progresses to winter. A laboratory-simulated winter photoperiod and temperature (12:12 L:D and 10 °C) were sufficient to induce the winter morph phenotype in D. suzukii. This winter morph is associated with increased survival at 1 °C when compared to the summer morph, thus explaining the ability of D. suzukii to survive cold winters. We then used RNA sequencing to identify gene expression differences underlying seasonal differences in D. suzukii physiology. Winter morph gene expression is consistent with known mechanisms of cold-hardening such as adjustments to ion transport and up-regulation of carbohydrate metabolism. In addition, transcripts involved in oogenesis and DNA replication were down-regulated in the winter morph, providing the first molecular evidence of a reproductive diapause in D. suzukii. CONCLUSIONS: To date, D. suzukii cold resistance studies suggest that this species cannot overwinter in northern locations, e.g. Canada, even though they are established pests in these regions. Combining physiological investigations with RNA sequencing, we present potential mechanisms by which D. suzukii can overwinter in these regions. This work may contribute to more accurate population models that incorporate seasonal variation in physiological parameters, leading to development of better management strategies.


Assuntos
Aclimatação , Drosophila/fisiologia , Estações do Ano , Animais , Temperatura Baixa , Feminino , Controle de Insetos , Masculino , Fenótipo
19.
BMC Evol Biol ; 15: 41, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25887180

RESUMO

BACKGROUND: Drosophila melanogaster often shows correlations between latitude and phenotypic or genetic variation on different continents, which suggests local adaptation with respect to a heterogeneous environment. Previous phenotypic analyses of latitudinal clines have investigated mainly physiological, morphological, or life-history traits. Here, we studied latitudinal variation in sleep in D. melanogaster populations from North and Central America. In parallel, we used RNA-seq to identify interpopulation gene expression differences. RESULTS: We found that in D. melanogaster the average nighttime sleep bout duration exhibits a latitudinal cline such that sleep bouts of equatorial populations are roughly twice as long as those of temperate populations. Interestingly, this pattern of latitudinal variation is not observed for any daytime measure of activity or sleep. We also found evidence for geographic variation for sunrise anticipation. Our RNA-seq experiment carried out on heads from a low and high latitude population identified a large number of gene expression differences, most of which were time dependent. Differentially expressed genes were enriched in circadian regulated genes and enriched in genes potentially under spatially varying selection. CONCLUSION: Our results are consistent with a mechanistic and selective decoupling of nighttime and daytime activity. Furthermore, the present study suggests that natural selection plays a major role in generating transcriptomic variation associated with circadian behaviors. Finally, we identified genomic variants plausibly causally associated with the observed behavioral and transcriptomic variation.


Assuntos
Drosophila melanogaster/classificação , Drosophila melanogaster/fisiologia , Sono , Transcriptoma , Aclimatação , Animais , Clima , Drosophila melanogaster/genética , Feminino , Geografia , Masculino , Modelos Animais , Panamá , Seleção Genética , Estados Unidos
20.
BMC Genomics ; 16: 987, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26596625

RESUMO

BACKGROUND: Understanding the phylogenetic relationships among major lineages of multicellular animals (the Metazoa) is a prerequisite for studying the evolution of complex traits such as nervous systems, muscle tissue, or sensory organs. Transcriptome-based phylogenies have dramatically improved our understanding of metazoan relationships in recent years, although several important questions remain. The branching order near the base of the tree, in particular the placement of the poriferan (sponges, phylum Porifera) and ctenophore (comb jellies, phylum Ctenophora) lineages is one outstanding issue. Recent analyses have suggested that the comb jellies are sister to all remaining metazoan phyla including sponges. This finding is surprising because it suggests that neurons and other complex traits, present in ctenophores and eumetazoans but absent in sponges or placozoans, either evolved twice in Metazoa or were independently, secondarily lost in the lineages leading to sponges and placozoans. RESULTS: To address the question of basal metazoan relationships we assembled a novel dataset comprised of 1080 orthologous loci derived from 36 publicly available genomes representing major lineages of animals. From this large dataset we procured an optimized set of partitions with high phylogenetic signal for resolving metazoan relationships. This optimized data set is amenable to the most appropriate and computationally intensive analyses using site-heterogeneous models of sequence evolution. We also employed several strategies to examine the potential for long-branch attraction to bias our inferences. Our analyses strongly support the Ctenophora as the sister lineage to other Metazoa. We find no support for the traditional view uniting the ctenophores and Cnidaria. Our findings are supported by Bayesian comparisons of topological hypotheses and we find no evidence that they are biased by long-branch attraction. CONCLUSIONS: Our study further clarifies relationships among early branching metazoan lineages. Our phylogeny supports the still-controversial position of ctenophores as sister group to all other metazoans. This study also provides a workflow and computational tools for minimizing systematic bias in genome-based phylogenetic analyses. Future studies of metazoan phylogeny will benefit from ongoing efforts to sequence the genomes of additional invertebrate taxa that will continue to inform our view of the relationships among the major lineages of animals.


Assuntos
Ctenóforos/genética , Mineração de Dados , Genômica , Filogenia , Animais , Viés , Evolução Molecular , Loci Gênicos/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA