Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Org Chem ; 89(18): 13150-13166, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39225314

RESUMO

Triplet energy transfer (EnT)-promoted photochemical pathways, arisen by visible light and its photosensitizers, have gained significant attention as a complementary strategy for initiating organic transformations in photochemical reactions that are unlikely to occur through a single electron transfer (SET) process. In the present study, we investigated the triplet EnT-promoted 1,3-dipolar cycloaddition reactions of N-(trimethylsilyl)methylphthalimide with electron-deficient alkynyl and alkenyl dipolarophiles. The triplet excited state of N-(trimethylsilyl)methylphthalimide, promoted by the triplet EnT from thioxanthone (TXA) photosensitizer, underwent sequential intramolecular SET and carbon-to-oxygen migration of the silyl group to form azomethine ylide. This generated ylide cycloadded to alkynes or alkenes to regioselectively and stereospecifically produce a nitrogen-containing benzopyrrolizidine scaffold with multiple stereogenic centers. Crucially, the stereoselectivity of these cycloaddition reactions (i.e., endo versus exo addition) was influenced by the nature of the dipolarophiles.

2.
J Org Chem ; 88(17): 12294-12310, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602462

RESUMO

The current study investigates SET-promoted photoaddition reactions of the silyl-group-containing N-phenylglycinates and N-phenylalaninates, N-((trimethylsilyl)methyl)-N-phenyl-substituted glycinates and alaninates, respectively, with fullerene C60 to explore how the types of amino acid esters (AAEs) and molecular oxygen affect the photoaddition reaction efficiencies and chemoselectivity of in situ formed radical cations of AAEs. The results showed that under deoxygenated (N2-purged) conditions, photoreactions of N-phenylglycinates with C60 produced aminomethyl-1,2-dihydrofullerenes through the addition of α-amino radicals arising by sequential SET and desilylation processes from initially formed secondary anilines to C60. In oxygenated conditions, photoreactions of N-phenylglycinates with C60, albeit less efficient, took place to form fulleropyrrolidines through a pathway involving 1,3-dipolar cycloaddition of azomethine ylides to C60 assisted by in situ formed 1O2. The same types of photoproducts were observed with N-phenylalaninates, though the reactions were less efficient. The use of methylene blue (MB) as a photosensitizer in the photoreactions under oxygenated conditions was especially effective in enhancing the efficiency of fulleropyrrolidine formation. These results demonstrate that photoaddition reactions of silyl-tether-containing N-phenyl AAEs with C60 can be governed by the reaction conditions and the presence or absence of a photosensitizer employed.

3.
J Org Chem ; 88(1): 172-188, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36516444

RESUMO

Photooxygenation reactions of electron-deficient enaminoesters bearing an oxophilic silyl tether at the α-position of the nitrogen atom using methylene blue (MB) were explored to develop a mild and efficient photochemical strategy for oxidative C-C double bond cleavage reactions via singlet oxygen (1O2). Photochemically generated 1O2, through energy transfer from the triplet excited state of MB (3MB*) to molecular oxygen (3O2), was added across a C-C double bond moiety of enaminoesters to form perepoxides, which rearranged to form dioxetane intermediates. The cycloreversion of the formed dioxetane via both C-C and O-O bond cleavage processes led to the formation of oxamates. Importantly, contrary to alkyl group tether-substituted electron-deficient enaminoesters that typically disfavor photooxygenation, the silyl tether-substituted analogues undergo this photochemical transformation efficiently with the assistance of a silyl tether, which facilitates formation of the perepoxide. The observations in this study provide useful information about photosensitized oxygenation reactions of unsaturated C-C bonds, and, moreover, this photochemical strategy can be utilized as a mild and feasible method for the preparation of diversely functionalized carbonyl compounds including oxamates.


Assuntos
Elétrons , Oxigênio , Oxigênio/química , Oxigênio Singlete/química
4.
Inorg Chem ; 62(35): 14228-14242, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37612826

RESUMO

To investigate the excited-state properties of metal-organic bichromophores, including energy transfer mechanisms, a series of new homoleptic N-heterocyclic carbene (NHC)-based iridium(III) complexes were prepared by incorporating a peripheral naphthalene (Np) (Ir(Nppmi)3: fac-/mer-Ir(1-Nppmi)3 and fac-/mer-Ir(2-Nppmi)3) or carbazole (Cz) (Ir(Czpmi)3: fac-/mer-Ir(o-Czpmi)3, fac-/mer-Ir(m-Czpmi)3, and fac-/mer-Ir(p-Czpmi)3) unit to the phenyl moiety of the phenylimidazole (pmi) ligand. Through a series of photophysical analyses and femtosecond time-resolved absorption (fs-TA) spectroscopy, it was discovered that the phosphorescence of the Ir core, (Ir(pmi)3), was considerably quenched, while intense phosphorescence peaks arising from the excited triplet Np (3Np*)/Cz (3Cz*) species were primarily observed at room temperature (r.t.) and low temperature. Such amplified phosphorescence of the tethered organic Np and Cz units originated from triplet-triplet energy transfer (TTET) from the high-lying metal-to-ligand charge transfer (3MLCT) state of the Ir(pmi)3 core to the ligand-centered triplet state (3LC) of the peripheral Np and Cz units. This result indicates that the exothermic intramolecular energy transfer (IET) in the excited triplet state realizes the efficient phosphorescent emission of geometrically confined organic tethers.

5.
J Org Chem ; 87(5): 2289-2300, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35045708

RESUMO

Finding a selective and efficient fragmentation process under ambient conditions is pivotal for the generation of fuels and chemical feedstocks from lignoceullosic biomass. In the present study, visible-light and amine-functionalized fullerene-based photocatalyst-promoted photodegradation reactions of dimeric ß-O-4 and ß-1 lignin model compounds, containing varying numbers of methoxy substituents on the arene ring, were explored to find and develop mild, eco-friendly photochemical techniques for efficient delignification. The results showed that, in contrast to well-known organic photoredox catalysts, amine-functionalized fullerene photocatalyst promoted photochemical reactions of lignin model compounds could lead to more efficient lignin fragmentation reactions through a pathway involving a selective Cα-Cß bond cleavage process, and in addition, Cα-hydroxyl moiety in lignin model compounds played a significant role in the success of the Cα-Cß bond cleavage reaction of lignin model substrates.


Assuntos
Fulerenos , Lignina , Aminas , Catálise , Lignina/química , Lignina/metabolismo
6.
Phys Chem Chem Phys ; 24(21): 13074-13082, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587699

RESUMO

Homoleptic fac-Ir(ppz)3 (ppz = phenylpyrazole) and a series of heteroleptic Ir(ppz)2(LX) complexes consisting of picolinic acid (pic), 3-hydroxypicolinic acid (picOH), and isoquinolinecarboxylic acid (iq) as ancillary ligands (LX) were synthesised to investigate the influence of the ancillary ligands on the photophysical properties of the complexes. Generally, the role of the ancillary ligand is considered insignificant compared to that of the main ligand. Ir(ppz)3 showed deep-blue emission with a vibronic structure at 77 K, whereas Ir(ppz)2(LX) showed a broad and red-shifted emission. Theoretical calculations of the molecular orbitals and energy levels were performed using density functional theory to understand the effect of the ancillary ligands on the emission changes. The 3MLCTppz state was calculated to be higher than the 3MLCTLX state. Therefore, interligand energy transfer (ILET) between the main and ancillary ligands can occur exothermically in the triplet state. The dynamics of the ILET process were monitored directly using a femtosecond time-resolved transient absorption (TA) spectroscopic technique. The 3MLCTppz state was generated upon excitation at 290 nm, and the intensity of the TA band related to the 3MLCTppz state decreased as the time delay increased. Concurrently, the TA band related to the 3MLCTLX state intensified. On the other hand, no further changes in the TA spectra were observed upon direct excitation of the 3MLCTLX state at 420 nm. In contrast with other Ir(ppz)2(LX) complexes, Ir(ppz)2(picOH) produced long-lived TA species, attributed to excited-state intramolecular proton transfer of the picOH ligand in the excited singlet state.

7.
J Org Chem ; 86(1): 403-413, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296191

RESUMO

A series of asymmetric donor-acceptor (D-A) perylene-based compounds, 3-(N,N-bis(4'-(R)-phenyl)amino)perylene (Peri-DPA(R)), were successfully prepared to explore their intramolecular charge transfer (ICT) properties. To induce ICT between the donor and acceptor, diphenylamine (DPA) derivatives (electron donor units) with the same functional groups (R = CN, F, H, Me, or OMe) at both para positions were linked to the C-3 position of perylene to produce five Peri-DPA derivatives. A steady-state spectroscopy study on Peri-DPA(R)s exhibited a progressively regulated ICT trend consistent with the substituent effect as it progressed from the electron-withdrawing group to the electron-donating group. In particular, a comparative study using a D-A-D (donor-acceptor-donor) system demonstrated that not only the electron push-pull substituent effect but also subunit combinations influence photophysical and electrochemical properties. The different ICT characters observed in Lippert-Mataga plots of D-A(CN) and D-A-D(CN) (CN-substituted D-A and D-A-D) led to the investigation on whether ICT emission of two systems with differences in subunit combinations is of the same type or of a different type. The femtosecond transient absorption (fs-TA) spectroscopic results provided direct evidence of ICT origin and confirmed that D-A(CN) and D-A-D(CN) exhibited the same transition mix of ICT (from donor to acceptor) and reverse ICT (rICT, from arylamine to CN unit). Density functional theory (DFT)/TD-DFT calculations support the presence of ICT for all five compounds, and the experimental observations of rICT presented only for CN-substituted compounds.

8.
Chemistry ; 26(70): 16733-16754, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32627219

RESUMO

Herein, we report the synthesis, and photochemical and -physical properties, as well as the catalytic performance, of a series of heteroleptic IrIII photosensitizers (IrPSs), [Ir(C^N)2 (N^NAryl )]+ , possessing ancillary ligands that are varied with aryl-substituents on bipyridyl unit [C^N=(2-pyridyl)benzo[b]thiophen-3-yl (btp); N^NAryl =4,4'-Y2 -bpy (Y=-Ph or -PhSi(Ph)3 ]. We found that the π-extension of bipyridyl ligand by aryl-substitution put bipyridyl ligand in use as an electron relay unit that performed charge accumulation before delivering to the catalytic center, greatly improving the overall CO2 -to-CO conversion activities. In a typical run, the aryl-substituted IrPS (tBu IrP-PhSi )-sensitized homogeneous systems (IrPS+ReI catalyst) gave a turnover number of 1340 (ΦCO =24.2 %) at the early stage of photolysis (<5 h). This study demonstrates that the π-character modulation on the ancillary bipyridyl ligand is critical for forthcoming catalytic performance.

9.
J Org Chem ; 85(20): 12882-12900, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32969218

RESUMO

Knowledge about factors that govern chemoselectivity is pivotal to the design of reactions that are utilized to produce complex organic substances. In the current study, single-electron transfer (SET)-promoted photoaddition reactions of fullerene C60 with both trimethylsilyl and various alkyl group-containing glycinates and ethyl N-alkyl-N-((trimethylsilyl)methyl)glycinates were explored to evaluate how the nature of N-alkyl substituents of glycinate substrates and reaction conditions govern the chemoselectivity of reaction pathways followed. The results showed that photoreactions of C60 with glycinates, performed in deoxygenated conditions, produced aminomethyl-1,2-dihydrofullerenes efficiently through a pathway involving the addition of α-amino radical intermediates that are generated by sequential SET-solvent-assisted desilylation of glycinate substrates to C60. Under oxygenated conditions, photoreactions of glycinate substrates, except N-benzyl-substituted analogues, did not take place efficiently owing to quenching of 3C60* by oxygen. Interestingly, N-benzyl-substituted glycinates did react under these conditions to form fulleropyrrolidines through a pathway involving 1,3-dipolar cycloaddition of in situ formed azomethine ylides to C60. The ylide intermediates were formed by regioselective H-atom transfer from glycinates by singlet oxygen. Furthermore, methylene blue (MB)-photosensitized reactions of C60 with glycinates under oxygenated conditions took place efficiently to produce fulleropyrrolidines independent of the nature of N-alkyl substituents of glycinates.

10.
Nano Lett ; 19(8): 5489-5495, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31348860

RESUMO

A fundamental understanding of hot electron transport is critical for developing efficient hot-carrier-based solar cells. There have been significant efforts to enhance hot electron flux, and it has been found that a key factor affecting the hot electron flux is the lifetime of the hot electrons. Here, we report a combined study of hot electron flux and the lifetime of hot carriers using a perovskite-modified plasmonic nanodiode. We found that perovskite deposition on a plasmonic nanodiode can considerably improve hot electron generation induced by photon absorption. The perovskite plasmonic nanodiode consists of MAPbI3 layers covering a plasmonic-Au/TiO2 Schottky junction that is composed of randomly connected Au nanoislands deposited on a TiO2 layer. The measured incident photon-to-electron conversion efficiency and the short-circuit photocurrent show a significantly improved solar-to-electrical conversion performance of this nanodiode. Such an improvement is ascribed to the improved hot electron flux in MAPbI3 caused by effective light absorption from near-field enhancement of plasmonic Au and the efficient capture of hot electrons from Au nanoislands via the formation of a three-dimensional Schottky interface. The relation between the lifetime and flux of hot electrons was confirmed by femtosecond transient absorption spectroscopy that showed considerably longer hot electron lifetimes in MAPbI3 combined with the plasmonic Au structure. These findings can provide a fundamental understanding of hot electron generation and transport in perovskite, which can provide helpful guidance to designing efficient hot carrier photovoltaics.

11.
J Org Chem ; 84(3): 1407-1420, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624063

RESUMO

The photochemical reactions of C60 with N-(trimethylsilyl)methyl substituted and N-alkyl/aryl substituted α-aminonitriles were explored to evaluate the scope and reaction efficiency depending on the structural nature of amine substrates. The results showed that photoreactions of C60 with trimethylsilyl group containing N-alkyl amines produced predominantly both trimethylsilyl and cyano group containing trans-pyrrolidine ring fused fulleropyrrolidines in a chemo- and stereoselective manner. Interestingly, photoreactions of C60 with N-branched alkyl substituted amines led to exclusive formation of non-silyl containing cycloadducts. In contrast to those of N-alkyl substituted α-aminonitriles, photoreactions of N-(trimethylsilyl)methyl and N-aryl substituted α-aminonitriles gave rise to the formation of both trans- and cis-isomeric fulleropyrrolidines with an inefficient and non-stereoselective manner. The feasible mechanistic pathways leading to generation of fulleropyrrolidines are 1,3-dipolar cycloaddition of the azomethine ylides, generated by either a single electron transfer (SET) (under N2-purged conditions) or H atom abstraction (under O2-purged conditions) process, to fullerene C60. The stereoselectivities of photoproducts depending on the nature of amines are likely to be associated with conformational stabilities of in situ generated azoemthine ylides.

12.
Inorg Chem ; 58(23): 16112-16125, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31713415

RESUMO

Incorporation of an electron-withdrawing -SO2CF3 substituent to cyclometalating C^N-phenylpyridine (ppy) ligand resulted in an expected blue-shifted phosphorescence in the corresponding homoleptic Ir(ppySCF3)3 complex, showing the emission of λem = 464 nm at 300 K. One of its heteroleptic derivatives, modified by a pyrazolyl borate LX ligand, Ir(ppySCF3)2(bor), exhibited further blue-shifted phosphorescence of λem = 460 nm at 300 K. Cyclic voltammograms (CVs) and density-functional theory (DFT) calculations supported the efficacy of the electron-withdrawing capability of the SO2CF3 substituent lowering HOMO energy and obtained widened bandgaps and resumed blue emissions for all of the iridium complexes studied. The homoleptic complexes of both substituents, Ir(ppySCF3)3 and Ir(ppySF)3, reached the higher quantum yields (ΦPL) of (0.89 and 0.72), respectively. Similarly, emission quantum yields (ΦPL) of the heteroleptic derivatives were reported to be (0.75, 0.83, and 0.87) for Ir(ppySCF3)2(acac), Ir(ppySCF3)2(bor), and Ir(ppySCF3)2(pic), respectively. Emission kinetics support the enhanced quantum efficiency when kr and knr values are compared between Ir(ppySCF3)3 and Ir(ppySF)3, and both values favorably contribute to attaining a higher quantum efficiency for Ir(ppySCF3)3. Among solution-processed multilayered devices having an ITO/PEDOT:PSS/TCTA:Ir dopant (10:1, w/w)/TmPyPB/Liq/Al structure, a heteroleptic dopant, Ir(ppySCF3)2(bor), exhibited better device performance, reporting an external quantum efficiency (EQE) of 1.14%, current efficiency (CE) of 2.31 cd A-1, and power efficiency (PE) of 1.21 lm W-1, together with blue chromaticity of CIEx,y = (0.16, 0.32).

13.
Phys Chem Chem Phys ; 21(13): 6908-6916, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30863836

RESUMO

A new series of homoleptic cyclometalated iridium(iii) complexes based on a phenylpyridine (ppy) ligand containing bulky substituents have been synthesized and characterized. The phosphorescence behavior of the Ir complexes is investigated by steady-state and time-resolved emission spectroscopic techniques. Comparison of the results with those of the reference Ir(ppy)3 reveals that the emission color and photophysical properties of other Ir complexes are influenced by the electron-donating groups (-CH3 and phenyl derivatives) attached to the ppy ligand. In particular, systematic red-shifts are observed by increasing the electron-donating ability. The emission spectrum of Ir(Me-ppy)3, having a small electron-donating -CH3 group, is red-shifted; however, the emission quantum yield is low and the nonradiative decay constant is large. On the other hand, although bulky phenyl derivative-adducts (Ir(Ph-ppy)3, Ir(MePh-ppy)3, and Ir(diMePh-ppy)3) also exhibit red-shifted emission, their kinetic and photophysical behaviors are more optimal than those of Ir(Me-ppy)3, whose behavior does not follow the energy gap law. This deviation may be attributed to the orthogonal structure associated with the steric hindrance of bulky substituents. The molecular structure, molecular orbitals in singlet/triplet manifolds, and energy band gap are verified by density functional theory calculations.

14.
Phys Chem Chem Phys ; 21(13): 7155-7164, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30888003

RESUMO

The phosphorescence properties of fac-Ir(pmp)3, mer-Ir(pmp)3, fac-Ir(dmpmp)3 and mer-Ir(dmpmp)3 (where pmp = 3-methyl-1-phenyl-2,3-dihydro-1H-imidazo[4,5-b]pyridine and dmpmp = 1-(2',6'-dimethylbiphenyl-2-yl)-3-methyl-2,3-dihydro-1H-imidazo[4,5-b]pyridine) in CH2Cl2 were investigated. At 77 K, the fac-isomers showed blue emission with a vibronic structure, while the mer-isomers showed less structured emissions. At 300 K, all complexes showed broad and markedly red-shifted emission spectra compared to those at 77 K. The quantum yields of the Ir(dmpmp)3 isomers were very low, and their emission lifetimes were very short compared to those of Ir(pmp)3. In order to understand the large differences between the photodynamic properties of Ir(pmp)3 and Ir(dmpmp)3, we performed femtosecond time-resolved transient absorption (TA) spectroscopic measurements. The TA spectra of Ir(dmpmp)3 were almost the same as those of Ir(pmp)3 at a short delay time. However, Ir(dmpmp)3 showed a new broad TA band at around 720 nm with increasing delay time. The rise time of this band was ca. 10 ps for both isomers, and this may be attributed to the geometrical change in the excited state, which is associated with the steric hindrance of the bulky dimethylphenyl substituent. Actually, Ir(dmpmp)3 showed a strong rigidochromic shift in the emission spectra with varying temperature. To understand the molecular orbitals and the energy levels, theoretical calculations were performed using density functional theory. As a result, structural displacement takes place accompanied by the fast migration of localization of excited states via intraligand charge transfer.

15.
Phys Chem Chem Phys ; 20(24): 16386-16392, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29873346

RESUMO

The binding modes of a pyrene-porphyrin dyad, (1-pyrenyl)-tris(N-methyl-p-pyridino)porphyrin (PyTMpyP), to various DNAs (calf thymus DNA (Ct-DNA), poly[d(G-C)2], and poly[d(A-T)2]) have been investigated using circular dichroism and linear dichroism measurements. Based on the polarization spectroscopic results, it can be shown that the pyrenyl and porphryin planes are skewed to a large extent for PyTMPyP in an aqueous environment and in the binding site of poly[d(G-C)2]. In this complex, a photoinduced electron transfer (PET) process between the pyrenyl and porphyrin moieties occurs. On the other hand, PET was not observed in the PyTMPyP-poly[d(A-T)2] complex, whereas the fluorescence intensity of TMPyP was enhanced. The molecular planes of the pyrene and porphyrin moieties are almost parallel in the poly[d(A-T)2] and Ct-DNA adducts. Moreover, the generation of 1O2 species occurs only for the PyTMPyP-Ct-DNA and PyTMPyP-poly[d(A-T)2] complexes. We discuss the photophysical properties of PyTMPyP which are attributed to the binding patterns and the sequence of DNA bases.


Assuntos
DNA/efeitos da radiação , Elétrons , Porfirinas/efeitos da radiação , Pirenos/efeitos da radiação , Animais , Bovinos , Dicroísmo Circular , DNA/química , Adutos de DNA/química , Fluorescência , Luz , Porfirinas/química , Pirenos/química , Oxigênio Singlete/química
16.
Phys Chem Chem Phys ; 20(43): 27585-27591, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30371702

RESUMO

We synthesised carbazole (Cz) dendrimers with heteroleptic Ir-complex cores. Upon excitation of the carbazole (Cz) dendrons, the phosphorescence of the core Ir(iii) complex was quenched due to the photoinduced electron transfer (PET) process. The PET dynamics of the excited Cz-dendrons were investigated using the femtosecond time-resolved transient absorption technique. A broad transient absorption (TA) band attributed to the S1-Sn transition of the 1Cz*-dendron was observed at around 630 nm in the first generation Cz-dendrimer (G1). This TA band in the second-generation dendrimer (G2) decayed with a longer lifetime of 55.5 ps compared to that of G1 (9.8 ps), because G2 has a larger distance between the Cz-dendron and Ir-complex core than that of G1. The decay time of the free 1Cz*-dendron was 6.3 ns, and thus, the reduced decay time in Gn corresponds to the PET dynamics. As a result of the PET process, the Cz cationic radical species (Cz˙+) was observed at around 780 nm. Interestingly, when the core Ir-complex in the dendrimer was excited with a 400 nm pulse selectively, the TA band of Cz˙+ was also detected at around 780 nm. This may be due to the photoinduced hole transfer (PHT) from the highest occupied molecular orbital (HOMO) energy state of Cz to the lowest singly occupied molecular orbital (LSOMO) energy state of the excited Ir-complex. The oxidation potential of Cz is lower than that of the Ir-complex, indicating that the HOMO of the Cz-dendron is located at a higher energy state than that of the Ir-complex. To investigate the relative order of the energy states and their orbital shapes, we performed theoretical calculations using density functional theory. The TA spectra were globally deconvoluted to generate the decay-associated spectra (DAS), from which the species-associated spectra (SAS) were calculated. The SAS can distinguish the individual intermediate species participating in the PET and PHT processes. The analysed rate constants of SAS were consistent with the results determined by the TA decays.

17.
Phys Chem Chem Phys ; 20(25): 17458-17463, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29911708

RESUMO

We have synthesised mono-(NpCb) and bis-[(N,N-phenyl-1-naphthylamino)benzo]-o-caboranes (NpCbNp), which show anomalously intense aggregation-induced emission (AIE) at long wavelengths and monomer emission at short wavelengths. The actual concentration of the aggregator in intense AIE is very low, so absorption spectroscopy is unsuitable for detecting small changes in the absorbance. Hence, to understand the aggregation pattern, we employ excitation spectroscopy, since this method has excellent sensitivity in compliance with the emission intensity. Moreover, we carried out synchronous fluorescence spectroscopic measurements to confirm that the aggregator is different from the monomeric species. The excitation spectrum shows distinguishable differences between the AIE and the normal emission. For the triad NpCbNp, the excitation spectrum for the AIE is located at a shorter wavelength than that for the monomeric emission spectrum, which means that the AIE is attributed to the H-type aggregator. On the other hand, for the dyad NpCb, the excitation spectrum for the AIE is observed at an identical wavelength as that for the monomeric species, which indicates that the aggregator is of the oblique type.

18.
J Phys Chem A ; 122(44): 8738-8744, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30351103

RESUMO

Structural changes of aromatic imides upon one-electron reduction are investigated by time-resolved resonance Raman spectroscopy during pulse radiolysis. Significant downshifts are observed for both the aromatic ring stretching and carbonyl stretching modes, which are related to a reduction of the bond order and increase of the charge density on these moieties. For three aromatic imides, i.e., 1,8-naphthalene imide (1,8-NI), 2,3-naphthalene imide (2,3-NI), and naphthalene diimide (NDI), the extent of structural changes is found to follow the order: 2,3-NI > 1,8-NI > NDI, reflecting the influence of charge distribution on molecular structure. To further investigate this phenomenon, a series of homologous NDI derivatives with a substituted phenyl group at the imide position are studied. The Raman peaks between 1550 and 1600 cm-1, which are assigned to aromatic stretching vibrations of the NDI moieties, are found to be sensitive to the charge distribution: stronger electron-withdrawing substituents result in these peaks shifting to slightly higher wavenumbers. As supported by a spin density analysis, despite the fact that the added charge is mostly localized on the NDI moiety, in the presence of an electron-withdrawing group, the subtle charge is likely to delocalize on the phenyl fragment, alleviating the effect of one-electron reduction on the molecular structure.

19.
J Phys Chem A ; 122(13): 3391-3397, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29554419

RESUMO

We report the results of photoinduced electron transfer (PET) in a novel dyad, in which a boron dipyrromethene (BODIPY) dye is covalently linked to o-carborane ( o-Cb). In this dyad, BODIPY and o-Cb act as electron donor and acceptor, respectively. PET dynamics were investigated using a femtosecond time-resolved transient absorption spectroscopic method. The free energy dependence of PET in the S1 and S2 states was examined on the basis of Marcus theory. PET in the S1 state occurs in the Marcus normal region. Rates are strongly influenced by the driving force (-Δ G), which is controlled by solvent polarity; thus, PET in the S1 state is faster in polar solvents than in nonpolar ones. However, PET does not occur from the higher energy S2 state despite large endothermic Δ G values, because deactivation via internal conversion is much faster than PET.

20.
Inorg Chem ; 56(9): 5305-5315, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28426230

RESUMO

We investigated the electrochemical and excited-state properties of 2,3-bis(2-pyridyl)pyrazine (dpp)-bridged bimetallic complexes, (L)2Ir-dpp-PtCl [1, L = 2-(4',6'-difluorophenyl)pyridinato-N,C2 (dfppy); 2, L = 2-phenylpyridinato-N,C2 (ppy)] and [(L)2Ir]2(dpp) [3, L = dfppy; 4, L = ppy] compared to monometallic complexes, (L)2Ir-dpp (5, L = dfppy; 6, L = ppy) and dpp-PtCl (dpp-PtIICl2; 7). The single-crystal X-ray crystallographic structures of 1, 3, 5, and 6 showed that 1 and 3 have approximately coplanar structures of the dpp unit, while the noncoordinated pyridine ring of dpp in 5 and 6 is largely twisted with respect to the pyrazine ring. We found that the properties of the bimetallic complex significantly depended on the electronic and geometrical modulations of each fragment: (1) electronic structure of the main L (C^N) ligand in an iridium chromophore (L = dfppy or ppy) and (2) planarity of the bridging ligand (dpp). Their electrochemical and photophysical properties revealed that efficient electron-transfer processes predominated in the bimetallic systems regardless of the second metal participation. The low efficiencies of photoluminescence of dpp-bridged Ir-Pt and Ir-Ir bimetallic complexes (1-4) could be explained by assuming the involvement of crossing to platinum- and iridium-based d-d states from the emissive state. Such stereochemical and electronic situations around dpp allowed thermally activated crossing to platinum- and iridium-based d-d states from the emissive triplet metal-to-ligand charge-transfer (3MLCT) state, followed by cleavage of the dpp-Pt and (L)2Ir-dpp bonds. The transient absorption study further confirmed that the planarity of the dpp bridging ligand, which was defined as the magnitude of tilt between the pyridine ring and pyrazine, had a direct correlation with the degree of nonradiative decay from the emissive iridium-based 3MLCT to the Ir d-d or Pt d-d state, leading to photoinduced dissociation of bimetallic complexes. From the dissociation pattern of metal complexes analyzed after photoirradiation, we found that their dissociation pathways were directly related to the quenching direction (either Ir d-d or Pt d-d) with a significant dependency on the relative 3MLCT levels of the (L)2Ir-dpp component.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA