Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Chem Chem Phys ; 26(4): 3474-3481, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205801

RESUMO

In order to develop high-performance CNT-based electronic and optoelectronic devices, it is crucial to establish the relationship between the electron transport properties of carbon nanotubes (CNTs) and their structures. In this work, we have investigated the transport properties of chiral (8, m) and (10, m) CNTs sandwiched between two gold electrodes by employing nonequilibrium Green's function (NEGF) combined with density functional theory (DFT). We demonstrate that with the change of chirality the transport property changes, as predicted by the (n - m) rule. The change of length is also considered. Our results show that the electrical conductance of (10, m) CNTs is larger than that of the (8, m) CNTs, due to larger diameter. Furthermore, we found that the (8, 1) chiral CNT does not follow the (n - m) rule in shorter length and it shows metallic behavior. The cohesive energy, wavefunctions of electronic states, and coupling energy calculation indicate that the devices considered in this study are stable. The transmission spectra, current vs. voltage curves, and transmission eigenchannels provide strong evidence for our findings. Among the (10, m) series, (10, 3) CNT would be the optimal choice for a semiconducting molecular junction device with a significant conductance of 20 µA at 0.8 bias voltage.

2.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38265086

RESUMO

The present work delves into the spin-polarized transport property of organic radicals sandwiched between two zigzag-graphene nanoribbon (ZGNR) electrodes by employing density functional theory and nonequilibrium Green's function technique. We demonstrated that the magnetic center(s) of the radical can manipulate the localized edge states of the ZGNR in the scattering region, causing ferromagnetic coupling. Such manipulation of the magnetic edges results in a high spin-filter effect in molecular junctions, and even the antiferromagnetic diradicals serve as nearly perfect spin filters. We have confirmed that this is a general phenomenon of ZGNR by analyzing two antiferromagnetic diradicals and a doublet. The spin-polarized density of states, transmission spectra, and current vs voltage curves of the systems provide strong evidence for our findings. This research strongly suggests that ZGNRs attached with organic radicals could be the perfect building blocks for spintronic materials.

3.
J Am Chem Soc ; 144(17): 7758-7767, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35404593

RESUMO

Optical cavities provide a versatile platform for manipulating the excited-state dynamics of molecules via strong light-matter coupling. We employ optical absorption and two-multidimensional electronic spectroscopy simulations to investigate the effect of optical cavity coupling in the nonadiabatic dynamics of photoexcited pyrazine. We observe the emergence of a novel polaritonic conical intersection (PCI) between the electronic dark state and photonic surfaces as the cavity frequency is tuned. The PCI could significantly change the nonadiabatic dynamics of pyrazine by doubling the decay rate constant of the S2 state population. Moreover, the absorption spectrum and excited-state dynamics could be systematically manipulated by tuning the strong light-matter interaction, e.g., the cavity frequency and cavity coupling strength. We propose that a tunable optical cavity-molecule system may provide promising approaches for manipulating the photophysical properties of molecules.

4.
J Am Chem Soc ; 144(44): 20400-20410, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36301840

RESUMO

The ultrafast photoinduced chirality loss of 2-iodobutane is studied theoretically by time- and frequency-resolved X-ray circular dichroism (TRXCD) spectroscopy. Following an optical excitation, the iodine atom dissociates from the chiral center, which we capture by quantum non-adiabatic molecular dynamics simulations. At variable time delays after the pump, the resonant X-ray pulse selectively probes the iodine and carbon atom involved in the chiral dissociation through a selected core-to-valence transition. The TRXCD signal at the iodine L1 edge accurately captures the timing of C-I photodissociation and thereby chirality loss, c.a 70 fs. The strong electric dipole-electric quadrupole (ED-EQ) response makes this signal particularly sensitive to vibronic coherence at the high X-ray regime. At the carbon K-edges, the signals monitor the molecular chirality of the 2-butyl radical photoproduct and the spin state of the iodine atom. The ED-EQ response is masked under the strong electric dipole-magnetic dipole response, making this signal intuitive for the electronic population. The evolution of the core electronic states and its chiral sensitivity is discussed. Overall, the element-specific TRXCD signal provides a detailed picture of molecular dynamics and offers a unique sensitive window into the time-dependent chirality of molecules.


Assuntos
Carbono , Iodo , Dicroísmo Circular , Raios X
5.
Proc Natl Acad Sci U S A ; 116(2): 395-400, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584098

RESUMO

The ultrafast spontaneous electron-density fluctuation dynamics in molecules is studied theoretically by off-resonant multiple X-ray diffraction events. The time- and wavevector-resolved photon-coincidence signals give an image of electron-density fluctuations expressed through the four-point correlation function of the charge density in momentum space. A Fourier transform of the signal provides a real-space image of the multipoint charge-density correlation functions, which reveal snapshots of the evolving electron density in between the diffraction events. The proposed technique is illustrated by ab initio simulations of the momentum- and real-space inelastic scattering signals from a linear cyanotetracetylene molecule.

6.
Philos Trans A Math Phys Eng Sci ; 377(2145): 20170470, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30929629

RESUMO

X-ray diffraction signals from the time-evolving molecular charge density induced by selective core excitation of chemically inequivalent carbon atoms are calculated. A narrowband X-ray pulse selectively excites the carbon K-edge of the -CH3 or -CH2F groups in fluoroethane (CH3-CH2F). Each excitation creates a distinct core coherence which depends on the character of the electronic transition. Direct propagation of the reduced single-electron density matrix, using real-time time-dependent density functional theory, provides the time-evolving charge density following interactions with external fields. The interplay between partially filled valence molecular orbitals upon core excitation induces characteristic femtosecond charge migration which depends on the core-valence coherence, and is monitored by the sum-frequency generation diffraction signal. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.


Assuntos
Carbono/química , Teoria Quântica , Difração de Raios X , Elétrons , Modelos Moleculares , Conformação Molecular
7.
J Chem Phys ; 150(5): 054706, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736670

RESUMO

Analogous to conventional carbon nanotubes, single-walled, chiral, γ-graphyne nanotubes (C-γGyNTs) are modeled based on the synthesized 2D γ-graphyne motif, and their electronic properties are investigated via density-functional tight-binding calculations for the first time. The resulting γGyNTs are predicted to be excellent semiconductors with moderate bandgaps ranging from 1.291 eV to 1.928 eV. In addition, the bandgaps of zigzag γGyNTs and armchair γGyNTs show damped oscillatory behaviour, while those of C-γGyNTs do not show any chirality- or diameter-dependent oscillatory behaviour. Interestingly, it is revealed that the (2a, m)-γGyNTs, where a is a positive integer, have nearly identical bandgap values, which provides a fresh method of bandgap manipulation for semiconductor devices that has not yet been reported.

8.
Phys Chem Chem Phys ; 19(45): 30814-30821, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29134223

RESUMO

Electrical control of magnetic exchange coupling interactions is central to designing magnetic materials. In this study, we performed density functional theory calculations to investigate the magnetic spin configuration, magnetic moment, and magnetic coupling strength of zigzag MoS2 nanoribbons (zMoS2NRs) with different edge passivation, that is, pristine (Pristine), hydrogen termination (H-tem), sulfur termination (S-term), and sulfhydryl termination (SH-term). Further, we investigated the influence of an external electric field (FExt) on the magnetic properties. Pristine and H-term showed an AFM ground configuration with considerably weak magnetic coupling strength while S-term and SH-term showed a single edge FM ground configuration in the absence of the electric field. When the external electric field was applied, the positive field intensified the original spin configuration, thus increasing the magnetic moment of the system while the negative field weakened the original spin configuration, thus decreasing the magnetic moment and further reversed the spin configuration from AFM to FM and vice versa in most systems. The magnetic coupling strength of the system increased for both Pristine and H-term regardless of the direction of the field. However, the extent of increase was much higher in Pristine due to the existence of relatively easily transferable dangling electrons compared with the constrained electrons of H-term restricted to chemical bonds. Our results demonstrate a possibility of reversible spin control from AFM to FM and vice versa by applying an electric field and the enhancement of the magnetic coupling strength of zMoS2NRs.

9.
Phys Chem Chem Phys ; 19(11): 7919-7922, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28262901

RESUMO

Electronic structures of zigzag (n,0), armchair (n,n), and chiral (n,m) α-graphyne nanotubes (αGNTs) with n = 2-7 were investigated using density functional tight binding calculations. Oscillatory behavior of the band gaps with a period of every (n - m) = 3 was found for each tube. According to the periodicity, αGNTs could be classified into three families, and their band gaps were in the increasing order of (n - m) = 3a < 3a + 1 < 3a + 2. Among the three families, αGNTs with (n - m) = 3a became effectively semimetallic when the tube size was larger than approximately 2 nm, while the other families remained semiconducting.

10.
J Chem Phys ; 142(2): 024318, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25591364

RESUMO

The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH&HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

11.
J Phys Chem A ; 118(27): 5112-21, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24936749

RESUMO

The intramolecular magnetic coupling constant (J) values of sets of diradicals linked to bis-DTDA, OVER, and NN radicals (DTDA, OVER, and NN groups) through an aromatic coupler were studied by unrestricted density functional theory calculations (UB3LYP/6-311++G(d,p)). Among 15 aromatic couplers, 9 compounds with an odd number of carbon atoms along its spin coupling path were found to interact ferromagnetically upon coupling with bisradicals while the other 6 couplers with an even number of carbon atoms along its spin coupling path give rise to antiferromagnetic coupling. The overall trends in the strength of magnetic interactions of aromatic couplers were preserved for DTDA, OVER, and NN groups so that the trend can be utilized as an index for the magnetic strength of a given coupler. It was found that the differences in the nucleus-independent chemical shift (NICS), bond order of connecting bonds, and Mulliken atomic spin density at connected atoms between triplet and BS states are closely related to the intramolecular magnetic behavior. 2,4- and 2,5-phosphole couplers exhibit the strongest intramolecular ferromagnetic and antiferromagnetic interactions among 15 aromatic couplers when linked to diverse bisradicals.

12.
J Phys Chem A ; 118(40): 9596-606, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25222192

RESUMO

It has recently been shown that the types of intramolecular magnetic interactions of diradical systems can be changed by the types of radical group: syn-group (or α-group) and anti-group (or ß-group). The aim of this study is to establish a useful scheme to understand and explain the intramolecular magnetic interactions in diradical systems regardless of radical groups and the topology of a coupler. We investigated the intramolecular magnetic coupling constant (J) of six oxoverdazyl diradicals (i-vi) coupled with a benzene ring based on the unrestricted DFT calculations. On the basis of our results, we devised a simple but useful scheme by combining the spin alternation rule and the concept of radical group classification. Consequently, it was found that the calculated J values and plots of spin density distributions were consistent with our proposed scheme. In addition, we discussed the closed-shell singlet (CS) state and the dihedral angle effect on J values in detail to comprehensively understand the magnetic interactions of diradical systems. Our scheme can provide the basic framework to design future organic high-spin molecules and organic magnetic materials.

13.
J Chem Theory Comput ; 20(10): 4254-4264, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38727197

RESUMO

We propose an X-ray Raman pump-X-ray diffraction probe scheme to follow solvation dynamics upon charge migration in a solute molecule. The X-ray Raman pump selectively prepares a valence electronic wavepacket in the solute, while the probe provides information about the entire molecular ensemble. A combination of molecular dynamics and ab initio quantum chemistry simulations is applied to a Zn-Ni porphyrin dimer in water. Using time-resolved X-ray diffraction and pair distribution functions, we extracted solvation shell dynamics.

14.
Heliyon ; 10(2): e24305, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293395

RESUMO

Four imidazolium-based ionic liquids (ILs) with two cations 1-pentyl-3-butylimidazolium [PBIM]+ and 1-benzyl-3-butylimidazolium tetrafluoroborate [BzBIM]+, and two anions tetrafluoroborate (BF4-) and trifluoromethanesulfonate (OTf-) were synthesized for NH3 solubility enhancement. The structural, thermal, and electrochemical stabilities, ionic conductivity, and viscosity of the four ILs, namely, [PBIM]BF4, [BzBIM]BF4, [PBIM]OTf, and [BzBIM]OTf, were investigated. Due to the intermolecular interaction of the benzyl group attached to the imidazolium ring, [BzBIM]+-based ILs exhibited higher thermal stability but lower ionic conductivity compared to [PBIM]+-based ILs. Further, the NH3 solubility in all ILs was measured using a custom-made setup at temperatures ranging from 293.15 to 323.15 K and pressures ranging from 1 to 5 bar. The effects of the cation and anion structures of ILs, as well as pressure and temperature, on the NH3 solubility in the ILs were also investigated. [PBIM]BF4 showed the best solubility because of its high free volume and low viscosity. Density functional calculations validated the superior NH3 solubility in [PBIM]BF4, attributable to the minimal reorganization of the [cation]anion complex geometry during the solvation process, yielding a low solvation free energy. The findings of this study suggest that ILs exhibit a high NH3 solubility capacity and cation and anion structures considerably affect the NH3 solubility in ILs.

15.
J Am Chem Soc ; 135(50): 18957-67, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24274689

RESUMO

Calix[4]arene-triacid-monoquinone (CTAQ), a quinone-containing water-soluble ionophore, was utilized to investigate how proton-coupled electron transfer (PCET) reactions of quinones were influenced by redox-inactive metal ions in aqueous environment. This ionophoric quinone derivative captured a Ca(2+) ion that drastically altered the voltammetric behavior of quinone, showing a characteristic response to pH and unique redox wave separation. Spectroelectrochemistry verified significant stabilization of the semiquinone, and electrocatalytic currents were observed in the presence of Ca(2+)-free CTAQ. Using digital simulation of cyclic voltammograms to clarify how the thermodynamic properties of quinones were altered, a simple scheme was proposed that successfully accounted for all the observations. The change induced by Ca(2+) complexation was explained on the basis of the combined effects of the electrostatic influence of the captured metal ion and hydrogen bonding of water molecules with the support of DFT calculation.

16.
J Phys Chem A ; 117(16): 3561-8, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23547984

RESUMO

The intramolecular magnetic coupling constants (J) of 9 diradicals (i-ix) coupled with an aromatic ring were investigated by means of unrestricted density functional theory (DFT) calculations [UB3LYP/6-311++G(d,p)]. For these diradicals, a remarkable linear relationship between the calculated and experimental J values was found. In this study, we suggest that the slope (0.380) of the linear relationship can be utilized as a scaling factor for estimating J values. By applying this scaling factor and calculating J values, we could predict the reliable J values of four dithiadiazolyl (DTDA) diradicals coupled with an aromatic ring. It was also found that this scaling scheme shows a dependence on the length of a coupler. Nevertheless, this scaling approach could be used to estimate J values for diverse diradical systems coupled with a particular coupler by DFT calculations.

17.
J Phys Chem A ; 116(25): 6837-44, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22663353

RESUMO

The intramolecular magnetic coupling constant (J) values of diradical systems linked with two monoradicals through a coupler (para-substituted phenyl acetylene (Model I), meta-substituted phenyl acetylene (Model II), ethylene (Model III)) were investigated by unrestricted density functional theory calculations. We divided eight monoradicals into α-group and ß-group according to Mulliken spin density values of the connected atoms. The overall trends in the strength of magnetic interactions of diradicals were found to be identical in three different model systems. The diradicals with para-substituted phenyl acetylene coupler resulted in almost twice stronger intramolecular magnetic coupling interactions of the corresponding diradicals as compared to the meta-substituted one with opposite magnetism. NN-Ethylene-PO (nitronyl nitroxide radical coupled to phenoxyl radical via ethylene coupler) was calculated to have the strongest magnetic coupling constant with ferromagnetism, and to be even stronger (more than twice) than NN-ethylene-NN (nitronyl nitroxide diradical with ethylene coupler), which was reported to have strong antiferromagnetic interactions in a previous experiment. It was found that the spin density values of the connected atoms are closely related to the determination of magnetic interactions and J values. The spin states of the ground state in diradical systems were explained by means of the spin alternation rule.


Assuntos
Acetileno/análogos & derivados , Etilenos/química , Magnetismo , Acetileno/química , Radicais Livres/química , Teoria Quântica
18.
J Chem Theory Comput ; 18(10): 6240-6250, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36166346

RESUMO

It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)-time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energies of 24 second- and 17 third-row molecules, the particular ΔCHP-MRSF(R) exhibited near perfect predictions with RMSE ∼0.5 eV, featuring a median value of 0.3 and an interquartile range of 0.4. Overall, the CHP effect is 2-4 times stronger than relativistic ones, contributing more than 20 eV in the cases of sulfur and chlorine third-row atoms. Such high precision allows to explain the splitting and spectral shapes of O, N, and C atom K-edges in the ground state of thymine with atom as well as orbital specific accuracy. The same protocol with a double hole particle relaxation also produced remarkably accurate K-edge spectra of core to valence hole excitation energies from the first (nO8π*) and second (ππ*) excited states of thymine, confirming the assignment of 1s → n excitation for the experimentally observed 526.4 eV peak. Regarding both accuracy and practicality, therefore, MRSF-TDDFT provides a promising protocol for core electron spectra of both ground and excited electronic states alike.


Assuntos
Cloro , Timina , Teoria da Densidade Funcional , Enxofre , Espectroscopia por Absorção de Raios X
19.
J Phys Chem Lett ; 11(1): 33-39, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31779313

RESUMO

The conical intersection dynamics of thiophenol is studied theoretically using the stimulated X-ray Raman imaging (SXRI) technique. SXRI employs a hard X-ray narrowband/broadband hybrid probe field and provides a real-time and real-space image of the passage through conical intersections. The signal, calculated using the minimal-coupling radiation/matter Hamiltonian, carries the phase information, and the real-space image of the transition charge density can be reconstructed by its Fourier transform. The two conical intersections (S2/S1 (11ππ*/1πσ*) and S1/S0 (1πσ*/S0)) can be distinguished and identified by the diffraction patterns in the level crossing regimes.

20.
J Phys Chem Lett ; 11(11): 4292-4297, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32370507

RESUMO

The conical intersection dynamics of thiophenol is studied by computing the stimulated X-ray resonant Raman spectroscopy signals. The hybrid probing field is constructed of a hard X-ray narrowband femtosecond pulse combined with an attosecond broadband X-ray pulse to provide optimal spectral and temporal resolutions for electronic coherences in the level crossing region. The signal carries phase information about the valence-core electronic coupling in the vicinity of conical intersections. Two conical intersections occurring during the course of the S-H dissociation dynamics can be distinguished by their valence-core transition frequencies computed at the complete active space self-consistent field level. The X-ray pulse is tuned such that the Raman transition at the first conical intersection between 1πσ* and 11ππ* involves higher core levels, while the Raman transition at the second conical intersection between 1πσ* and S0 involves the lowest core level in the sulfur K-edge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA