Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nano Lett ; 22(2): 570-577, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34779637

RESUMO

Multi-valued logic gates are demonstrated on solution-processed molybdenum disulfide (MoS2) thin films. A simple chemical doping process is added to the conventional transistor fabrication procedure to locally increase the work function of MoS2 by decreasing sulfur vacancies. The resulting device exhibits pseudo-heterojunctions comprising as-processed MoS2 and chemically treated MoS2 (c-MoS2). The energy-band misalignment of MoS2 and c-MoS2 results in a sequential activation of the MoS2 and c-MoS2 channel areas under a gate voltage sweep, which generates a stable intermediate state for ternary operation. Current levels and turn-on voltages for each state can be tuned by modulating the device geometries, including the channel thickness and length. The optimized ternary transistors are incorporated to demonstrate various ternary logic gates, including the inverter, NMIN, and NMAX gates.

2.
ACS Appl Mater Interfaces ; 16(17): 21953-21964, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629409

RESUMO

While photoelectrochemical (PEC) cells show promise for solar-driven green hydrogen production, exploration of various light-absorbing multilayer coatings has yet to significantly enhance their hydrogen generation efficiency. Acidic conditions can enhance the hydrogen evolution reaction (HER) kinetics and reduce overpotential losses. However, prolonged acidic exposure deactivates noble metal electrocatalysts, hindering their long-term stability. Progress requires addressing catalyst degradation to enable stable, efficient, and acidic PEC cells. Here, we proposed a process design based on the photoilluminated redox deposition (PRoD) approach. We use this to grow crystalline Rh2P nanoparticles (NPs) with a size of 5-10 on 30 nm-thick TiO2, without annealing. Atomically precise reaction control was performed by using several cyclic voltammetry cycles coincident with light irradiation to create a system with optimal catalytic activity. The optimized photocathode, composed of Rh2P/TiO2/Al-ZnO/Cu2O/Sb-Cu2O/ITO, achieved an excellent photocurrent density of 8.2 mA cm-2 at 0 VRHE and a durable water-splitting reaction in a strong acidic solution. Specifically, the Rh2P-loaded photocathode exhibited a 5.3-fold enhancement in mass activity compared to that utilizing just a Rh catalyst. Furthermore, in situ scanning transmission electron microscopy (STEM) was performed to observe the real-time growth process of Rh2P NPs in a liquid cell.

3.
ACS Appl Mater Interfaces ; 16(24): 31261-31273, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38850236

RESUMO

Multifunctional photodetectors (PDs) with broadband responsivity (R) and specific detectivity (D*) at low light intensities are gaining significant attention. Thus, we report a bilayer PD creatively fabricated by layering two-dimensional (2D) Sb2Se3 nanoflakes (NFs) on one-dimensional (1D) ZnO nanorods (NRs) using simple thermal transfer and hydrothermal processes. The unique coupling of these two layers of materials in a nanostructured form, such as 2D-Sb2Se3 NFs/1D-ZnO NRs, provides an effective large surface area, robust charge transport paths, and light-trapping effects that enhance light harvesting. Furthermore, the combination of both layers can effectively facilitate photoactivity owing to proper band alignment. The as-fabricated device demonstrated superior overall performance in terms of a suitable bandwidth, good R, and high D* under low-intensity light, unlike the single-layered 1D-ZnO NRs and 2D-Sb2Se3 NF structures alone, which had poor detectivity or response in the measured spectral range. The PD demonstrated a spectral photoresponse ranging from ultraviolet (UV) to visible (220-628 nm) light at intensities as low as 0.15 mW·cm-2. The PD yielded a D* value of 3.15 × 1013 Jones (220 nm), which reached up to 5.95 × 1013 Jones in the visible light region (628 nm) at a 3 V bias. This study demonstrated that the 2D-Sb2Se3 NFs/1D-ZnO NRs PD has excellent potential for low-intensity light detection with a broad bandwidth, which is useful for signal communications and optoelectronic systems.

4.
J Nanosci Nanotechnol ; 13(5): 3715-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858934

RESUMO

In this report, we have demonstrated the morphological evolution of the silver nanoparticles (AgNPs) by controlling the growth conditions and its effect on morphology of silicon (Si) during metal-induced electroless etching (MICE). Self-organized AgNPs with peculiarly shape were synthesized by an electroless plating method in a conventional aqueous hydrofluoric acid (HF) and silver nitrate (AgNO3) solution. AgNP nuclei were densely created on Si wafer surface, and they had a strong tendency to merge and form continuous metal films with increasing AgNO3 concentrations. Also, we have demonstrated that the fabrication of aligned Si nanowire (SiNW) arrays in large area of p-Si (111) substrates by MICE in a mixture of HF and hydrogen peroxide (H2O2) solution. We have found that the morphology of the initial AgNPs and oxidant concentration (H2O2) greatly influence on the shape of the SiNW etching profile. The morphological results showed that AgNP shapes were closely related to the etching direction of SiNWs, that is, the spherical AgNPs preferred to move vertical to the Si substrate, whereas non-spherical AgNPs changed their movement to the [100] directions. In addition, as the etching activity was increased at higher H2O2 concentrations, AgNPs had a tendency to move from the original [111] direction to the energetically preferred [100] direction.


Assuntos
Cristalização/métodos , Ácido Fluorídrico/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Impressão Molecular/métodos , Silício/química , Prata/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
5.
Mater Horiz ; 10(4): 1373-1384, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36744967

RESUMO

In this study, a symmetric bidirectional transistors (SBT) is proposed. The device simultaneously implements the "strong-inversion" and "accumulation" mechanisms of a metal-oxide semiconductor field-effect transistor and TFT, respectively, in different bias directions in a single-channel vertical transistor (V-Tr). This ideal SBT device is designed and fabricated by selecting appropriate materials exhibiting a narrow bandgap and intrinsic characteristics of Sb-doped p-type Cu2O, using a V-Tr to optimize the device structure for high-field-induced short-channel and ambipolar operation, and implementing facile electrochemical deposition for channel and plasma channel treatments. To adopt artificial conductivity control for producing the transporting path of minority electron carriers, the patterned-channel-layer sidewall is locally treated using oxygen plasma, thereby suppressing the minority-carrier self-compensation. The SBT device exhibits an excellent on-current (i.e., symmetric accumulation and strong inversion modes in the p- and n-type channel regions, respectively) and excellent midregion off-current, similar to those of ideal ambipolar transistors. Moreover, owing to multilevel signals and excellent inverter behaviors, the SBT device is suitable for application in complementary-metal-oxide-semiconductors and logic memories.

6.
Mater Horiz ; 10(11): 5314, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850376

RESUMO

Retraction of 'Ambipolar operation of progressively designed symmetric bidirectional transistors fabricated using single-channel vertical transistor and electrochemically prepared copper oxide' by Sung Hyeon Jung et al., Mater. Horiz., 2023, 10, 1373-1384, https://doi.org/10.1039/D2MH01413K.

7.
Adv Sci (Weinh) ; 10(21): e2300639, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119402

RESUMO

Applications of abundant seawater in electrochemical energy conversion are constrained due to the sluggish oxygen evolution reaction and the corrosive chlorine oxidation reaction. Hence, it is imperative to develop an efficient anodic reaction alternative suitable for coupling with the cathodic counterpart. Due to a low thermodynamic oxidation potential, hydrazine oxidation reaction (HzOR) offers a unique pathway to overcome these challenges. Herein, spontaneously in situ reduced atomic scale Pd surface-confined to electrochemically prepared layered Co(OH)2 on carbon cloth is synthesized. This study reveals the hydrazine and Pd-dependent morphological evolution of Co(OH)2 and its Pd hybrids into nanoparticulate form. Unlike various layered double hydroxides, Pd integrated Co(OH)2 benefits from the contribution of Co(OH)2 as an active HzOR catalyst and the reductive support to host Pd, resulting in synergistically improved performances. Mass activities of Pd in alkaline and alkaline saline electrolyte are 11.24 and 9.83 A mgPd -1 at 200 mV, respectively, corresponding to the highest HzOR activities among noble metals. The optimized Pd hybrid demonstrates ≈6.5 times the current density relative to PtC (14.91 mA cm-2 at 200 mV) in alkaline saline water with hydrazine. These findings would be beneficial to realize high overpotential anodic alternatives and reduce over-dependence on freshwater for electrocatalysis.

8.
Mater Horiz ; 10(9): 3382-3392, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37439537

RESUMO

Resistive random-access memory (RRAM) devices have significant advantages for neuromorphic computing but have fatal problems of uncontrollability and abrupt resistive switching behaviors degrading their synaptic performance. In this paper, we propose the electrochemical design of an active Cu2O layer containing a strategic sublayer of ultrafine Cu nanoparticles (U-Cu NPs) to form uniformly dispersed conducting filaments, which can effectively improve the reliability for analog switching of RRAM-based neuromorphic computing. The electrochemical pulse deposited (EPD) U-Cu NPs are linked to the bottom electrode through a semi-conductive path within the bottom Cu2O layer, since the EPD is preferentially carried out on the conductive sites. All Cu2O films with U-Cu NPs are developed in situ in the single electrolyte bath without any pause. The proposed U-Cu NPs can concentrate the external electric field and can generate conductive filament paths for analog resistive switching. The applied electric field was uniformly spread to U-Cu NPs at the center of the active layer and displays resistive switching behavior via multiple conductive filaments. This shows a strong harmony between the resistance-switching characteristics and the analog operation of the active layer. This RRAM device shows outstanding gradual analog switching, great linearity, dynamic range, endurance, precision, speed, and retention characteristics simultaneously and adequately for neuromorphic computing by realizing multiple weak filament-type operation.

9.
Mater Horiz ; 10(11): 5313, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850369

RESUMO

Retraction of 'Progressive p-channel vertical transistors fabricated using electrodeposited copper oxide designed with grain boundary tunability' by Sung Hyeon Jung et al., Mater. Horiz., 2022, 9, 1010-1022, https://doi.org/10.1039/D1MH01568K.

10.
Nanotechnology ; 23(14): 145401, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22433819

RESUMO

A novel stamped hybrid solar cell was proposed using the stamping transfer technique by stamping an active PEDOT:PSS thin layer onto the top of silicon nanowires (SiNWs). Compared to a bulk-type counterpart that fully embeds SiNWs inside PEDOT:PSS, an increase in the photovoltaic efficiency was observed by a factor of ∼4.6, along with improvements in both electrical and optical responses for the stamped hybrid cell. Such improvements for hybrid cells was due to the formation of well-connected and linearly aligned active PEDOT:PSS channels at the top ends of the nanowires after the stamping process. These stamped channels facilitated not only to improve the charge transport, light absorption, but also to decrease the free carriers as well as exciton recombination losses for stamped hybrid solar cells.


Assuntos
Nanofios/química , Poliestirenos/química , Silício/química , Energia Solar , Tiofenos/química , Eletrodos , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanotecnologia/métodos , Nanofios/ultraestrutura , Polímeros/química
11.
J Nanosci Nanotechnol ; 12(7): 5571-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966612

RESUMO

We employed temperature-dependent photoluminescence (PL) to explain the donor and acceptor dynamics in phosphorus doped stable p-type P:ZnO nanorods. The room temperature PL revealed good crystalline and optical quality of P:ZnO nanorods. The 10 K PL spectrum exhibited a dominant acceptor bound exciton (A0X) or donor bound exciton (D0X) emission corresponding to p- and n-type P:ZnO nanorods, respectively. The donor-acceptor-pair (DAP) transitions exhibited different thermal dissociation energies for the p- and n-type P:ZnO nanorods, suggesting their different quenching channels. The quenching of the DAP transitions of the p-type ZnO:P nanorods was associated with the thermal dissociation of the DAP into free excitons, while the DAP transition of the n-type ZnO:P nanorods was quenched through the thermal dissociation of the shallow donor into free electrons. The rectifying behavior of a p-n homojunction diode formed by the p-type P:ZnO nanorods on n-type ZnO film confirmed the p-type conduction of the P:ZnO nanorods.

12.
J Nanosci Nanotechnol ; 12(7): 5598-603, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966617

RESUMO

Al-doped ZnO (AZO) thin films with various Al concentrations were synthesized on Si(001) substrates with native oxide layers by atomic layer deposition process. The effects of the Al concentration on the microstructural characteristics of the AZO thin films grown at 250 degrees C and the correlation between their microstructural characteristics and electrical properties of the AZO thin films were investigated by AFM, XRD, HRTEM and Hall measurements. The XRD and HRTEM results revealed that the crystallinity and electrical properties of the undoped ZnO thin films were enhanced by 2.48 at% Al doping. However, 12.62 at% Al doping induced the deterioration of their crystallinity and electrical properties due to the formation of nano-sized metallic Al clusters and randomly oriented ZnO-based nano-crystals. To enhance the electrical properties of the AZO thin films while maintaining their crystallinity and electrical properties, a moderate Al concentration has to be chosen under the solubility limit of Al in ZnO.

13.
Chemosphere ; 286(Pt 2): 131789, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426139

RESUMO

Artificially mimicking structures/morphologies available in the nature to develop multifunctional materials for catalysis is receiving greater attention. Particularly, the burdock flower morphology, which has a hollow-globe surrounded by spiky sheets, represents a multifunctional structure helpful in adsorption as well as intercalation of molecules. Given this, we have strategically developed a robust microwave (MW) bubble-template process to achieve highly uniform α-Fe2O3 and carbon-enriched Fe3O4 (Fe3O4@C) phases resembling the characteristics of spiky hollow burdock morphologies. The utilization of the MW bubble-templates as a pretreatment to the iron-based precursor solution helps in producing hollowed open-space ferrous glycolate burdock flower morphology with rapid production rate and without any addition of extra agents. Such burdock flower structures remain intact even after annealing in air/N2 ambiance providing highly photoactive α-Fe2O3 or magnetic Fe3O4@C, respectively. Utilizing the hollow burdock flower structures together with the individual photo/magnetic properties of iron oxide phases, a dual-layer filter was designed to remove hazardous dye molecules from water, which efficiently photodegraded (99.2 %) in natural sunlight as well as showed excellent adsorption (99.7 %) within minutes. Comparatively, a lower catalytic activity using simple iron oxide nanoparticles, closed, and faded burdock morphologies were seen. Hence, the high catalytic activity in removing the dye molecules, retention of structural phases after repeated use, and strong durability were a result of the synergetic effect of photo/magnetic properties, activated surface/spiky open burdock structure.


Assuntos
Arctium , Poluentes Químicos da Água , Poluentes da Água , Compostos Férricos , Flores
14.
Small Methods ; 6(11): e2201066, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126169

RESUMO

Dual-phasic (DP)-TiO2 -based composites are considered attractive anode materials for high lithium-ion storage because of the synergetic contribution from dual-phases in lithium-ion storage. However, a comprehensive investigation on more efficient architectures and platforms is necessary to develop lithium-storage devices with high-rate capability and long-term stability. Herein, for the first time, a rationally designed bronze-rich DP-TiO2 -embedded amorphous carbon nanoarchitecture, denoted as DP-TiO2 @C, from sacrificial Ti-metal-organic frameworks (Ti-MOFs) via a two-step pyrolysis process is proposed. The bronze/anatase DP-TiO2 @C nanocomposites are successfully synthesized using a unique pyrolysis process, which decomposes individually the metal clusters and organic linkers of Ti-MOFs. DP-TiO2 @C exhibits a significantly high density and even distribution of nanoparticles (<5 nm), enabling the formation of numerous heterointerfaces. Remarkably, the bronze-rich DP-TiO2 @C shows high specific capacities of 638 and 194 mAh g-1 at current densities of 0.1 and 5 A g-1 , respectively, owing to the contribution of the synergetic interfacial structure. In addition, reversible specific capacities are observed at a high rate (5 A g-1 ) during 6000 cycles. Thus, this study presents a new approach for the synthesis of DP-TiO2 @C nanocomposites from a sacrificial Ti-MOF and provides insights into the efficient control of the volume ratio in DP-TiO2 anode architecture.

15.
Micromachines (Basel) ; 13(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35457831

RESUMO

To utilize continuous ultralow intensity signals from oxide synaptic transistors as artificial synapses that mimic human visual perception, we propose strategic oxide channels that optimally utilize their advantageous functions by stacking two oxide semiconductors with different conductivities. The bottom amorphous indium-gallium-zinc oxide (a-IGZO) layer with a relatively low conductivity was designed for an extremely low initial postsynaptic current (PSCi) by achieving full depletion at a low negative gate voltage, and the stacked top amorphous indium-zinc oxide (a-IZO) layer improved the amplitude of the synaptic current and memory retention owing to the enhancement in the persistent photoconductivity characteristics. We demonstrated an excellent photonic synapse thin-film transistor (TFT) with a precise synaptic weight change even in the range of ultralow light intensity by adapting this stacking IGZO/IZO channel. The proposed device exhibited distinct ∆PSC values of 3.1 and 18.1 nA under ultralow ultraviolet light (350 nm, 50 ms) of 1.6 and 8.0 µW/cm2. In addition, while the lowest light input exhibited short-term plasticity characteristics similar to the "volatile-like" behavior of the human brain with a current recovery close to the initial value, the increase in light intensity caused long-term plasticity characteristics, thus achieving synaptic memory transition in the IGZO/IZO TFTs.

16.
Mater Horiz ; 9(3): 1010-1022, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985074

RESUMO

A strategically designed electrodeposition method is proposed for the coating of p-type copper(i) oxide (Cu2O) channels for oxide thin film transistors. To date, conventional p-type oxide semiconductors have revealed a poor mobility and stability and this has obstructed the development of all oxide based logic devices. Furthermore, previous studies on p-type oxide transistors have been limited by the use of a typical planar type configuration. Our Cu2O electrodeposition method designed by incorporating Sb element promotes vertical alignment of the grain boundaries (GBs) and it perfectly coincides with the charge transport direction from the source to the drain in the vertical field effect transistors. These vertically aligned GBs are bundle type GBs and are likely to be ideal for vertical transistors with supreme electrical performances owing to the structurally suppressed grain boundary charge scattering. This alignment of the GBs in the electrodeposited Sb doped Cu2O (Sb:Cu2O) also demonstrates a superior vertical taper profile with conventional wet chemical etching owing to the extremely preferential etching rate along the GBs. Surprisingly, the sidewall formation, with a smooth and steep morphology causes the formation of abrupt and non-defective gate insulator/channel interfaces for superior spacer-free vertical transistors. Consequently, the Cu2O vertical field effect transistors exhibit extraordinary transistor performances of Vth = 0.4 V, µFE = 8 cm2 V-1 s-1, subthreshold swing = 0.24 V dec-1, on/off current ratio = 2 × 108 and qualified electrical and long-term stability characteristics under various environments. To the best of our knowledge, this is the first reported study on an electrodeposited method to design troublesome p-type oxide Cu2O as novel vertical transistors. Finally, power efficient logic inverter circuits with unprecedented performances, such as good noise margins, remarkable gain values of 15.6 (2 VDD) and 62.7 (5 VDD), and high frequency operation up to 10 kHz, are demonstrated using these p-type Cu2O transistors by interconnecting n-type IGZO transistors.

17.
Nanotechnology ; 22(26): 265506, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21586813

RESUMO

This study reports that the visible-blind ultraviolet (UV) photodetecting properties of ZnO nanowire based photodetectors were remarkably improved by introducing ultrathin insulating MgO layers between the ZnO nanowires and Si substrates. All layers were grown without pause by metal organic chemical vapor deposition and the density and vertical arrangement of the ZnO nanowires were strongly dependent on the thickness of the MgO layers. The sample in which an MgO layer with a thickness of 8 nm was inserted had high density nanowires with a vertical alignment and showed dramatically improved UV photosensing performance (photo-to-dark current ratio = 1344.5 and recovery time = 350 ms). The photoresponse spectrum revealed good visible-blind UV detectivity with a sharp cut off at 378 nm and a high UV/visible rejection ratio. A detailed discussion regarding the developed UV photosensing mechanism from the introduction of the i-MgO layers and highly dense nanowires in the n-ZnO nanowires/i-MgO/n-Si substrates structure is presented in this work.

18.
J Nanosci Nanotechnol ; 11(1): 458-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446476

RESUMO

This study examined the effect of the synthesis temperatures on the characteristics of vertically aligned Ga-doped ZnO (GZO) nanorods grown on a ZnO template by thermal evaporation using Zn and Ga sources. The increase in synthesis temperature at less than 700 degrees C induced stress relaxation relative to the ZnO template due to the suppression of defect generation by the formation of nanorods, while a further increase resulted in an increase in compressive strain due to dominant Ga doping. The increase in Ga concentration in the GZO nanorods with increasing synthesis temperature was also confirmed by X-ray photoelectron spectroscopy and photoluminescence. The best conductivity was observed in the GZO nanorods grown at 800 degrees C. On the other hand, the GZO nanorods synthesized at 900 degrees C showed less conductivity and weak near-band-edge emission properties due to the generation of defects from the excess Ga.

19.
J Nanosci Nanotechnol ; 11(8): 7327-30, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103188

RESUMO

This research reports on morphological changes depending on the growth temperature in MgZnO nanostructures grown on GaAs substrates by metalorganic chemical vapor deposition as well as the investigation of their optical properties. As the growth temperature increased, the morphology of the MgZnO nanostructure changed from one-dimensional nanowires (480 degrees C) to pseudo-two-dimensional nanowalls (500 degrees C) to pyramid-shaped structures (520 degrees C). Among these structures, the nanowalls exhibited the best optical properties due to the large active surface area and high crystalline quality.

20.
Small Methods ; 5(2): e2000753, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34927880

RESUMO

BiVO4 , which is a representative photoanode material for photoelectrochemical water splitting, intrinsically restricts high conversion efficiency, owing to faster recombination, low electron mobility, and short electron diffusion length. While the photocurrent density of typical BiVO4 corresponds to only 21.3% of the maximum photocurrent density (4.68 mA cm-2 ), decoration of the BiVO4 photoanode with zeolitic imidazolate framework-67 (ZIF-67) exhibits a synergetic effect to raise the overall photocatalytic ability at the BiVO4 surface region to a higher level via the energy-transfer process from BiVO4 to ZIF-67. The hybrid ZIF-67/BiVO4 photoanode follows two convenient photoelectrochemical pathways: 1) energy-transfer-induced water oxidation reaction in ZIF-67 and 2) water oxidation reaction by direct contact between the BiVO4 surface and electrolytes. Compared to the moderate photocurrent density (≈1 mA cm-2 ) of single-layer BiVO4 , the proposed ZIF-67/BiVO4 photoanodes show a remarkably high photocurrent (2.25 mA cm-2 ) with high stability, despite the lack of hole scavengers in the electrolyte. Furthermore, the absorbed photon-to-current efficiency of the ZIF-67/BiVO4 photoanode is ≈2.5 times greater than that of BiVO4 . This work proposes a promising solution for efficient water oxidation that overcomes the intrinsic material limitations of BiVO4 photoelectrodes by using energy transfer-induced photon recycling and the decoration of porous ZIFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA