Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(14): e9764, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38714901

RESUMO

RATIONALE: Various medium formulations contain essential fatty acids at concentrations ranging from 10 to 100 mg/L. Accurate and precise lipid measurement in media is crucial for monitoring media quality and conducting studies on lipids in the context of cell culture. This study employed two-dimensional gas chromatography (GC × GC) analyses to offer enhanced resolution, sensitivity, and separation performance compared to GC. METHODS: Quantification of fatty acid methyl esters (FAMEs) in a medium was conducted using GC × GC combined with a high-resolution mass spectrometer and flame ionization detector, considering potential interference from nonionic surfactant Tween 80, which was precipitated and removed by optimizing the concentration of cobalt thiocyanate (CTA) solution during pretreatment. This advanced analytical approach enabled identification of cis and trans isomers of identical molecular weights and determination of the location and number of double bonds in the same carbon number structure. RESULTS: Our analysis identified 36 FAMEs within the C6-C24 region, and a 5% CTA solution was optimal for efficient removal of Tween 80 during lipid extraction. Additionally, this advanced method minimized FAME contamination and loss during pretreatment, thereby significantly reducing the sample volume required to detect trace levels of FAMEs. This improvement led to a fatty acid recovery rate of 106% while maintaining the average relative standard deviation for the target FAMEs of about 3%. CONCLUSIONS: Our research paves the way for future investigation into medium quality control and the role of fatty acids in cell culture. This offers the possibility for economical and effective trace quantification of fatty acids in complex media.


Assuntos
Ácidos Graxos , Ácidos Graxos/análise , Ácidos Graxos/química , Meios de Cultura/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polissorbatos/química , Polissorbatos/análise
2.
Environ Microbiol ; 24(8): 3612-3624, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35191581

RESUMO

The omics-based studies are important for identifying characteristic proteins in plants to elucidate the mechanism of ACC deaminase producing bacteria-mediated salt tolerance. This study evaluates the changes in the proteome of rice inoculated with ACC deaminase producing bacteria under salt-stress conditions. Salt stress resulted in a significant decrease in photosynthetic pigments, whereas inoculation of Methylobacterium oryzae CBMB20 had significantly increased pigment contents under normal and salt-stress conditions. A total of 76, 51 and 33 differentially abundant proteins (DAPs) were identified in non-inoculated salt-stressed plants, bacteria-inoculated plants under normal and salt stress conditions respectively. The abundances of proteins responsible for ethylene emission and programmed cell death were increased, and that of photosynthesis-related proteins were decreased in non-inoculated plants under salt stress. However, bacteria-inoculated plants had shown higher abundance of antioxidant proteins, RuBisCo and ribosomal proteins that are important for enhancing stress tolerance and improving plant physiological traits. Collectively, salt stress might affect plant physiological traits by impairing photosynthetic machinery and accelerating apoptosis leading to a decline in biomass. However, inoculation of plants with bacteria can assist in enhancing photosynthetic activity, antioxidant activities and ethylene regulation related proteins for attenuating salt-induced apoptosis and sustaining growth and development.


Assuntos
Oryza , Antioxidantes/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Etilenos/metabolismo , Oryza/microbiologia , Proteômica , Estresse Salino , Estresse Fisiológico
3.
Cell Mol Neurobiol ; 42(7): 2427-2431, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33909214

RESUMO

Cav1.2 channel phosphorylation plays an important role in regulating neuronal plasticity by action potential-dependent Ca2+ entry. Most studies of Cav1.2 regulation by phosphorylation have been reported in heart and muscles. Here, we identified phosphorylation sites of neuronal Cav1.2 channel protein purified from rat brain using mass spectrometry. The functional characterization of these phosphorylation sites showed altered voltage-dependent biophysical properties of the channel, without affecting current density. These results show that neuronal Cav1.2 channel is regulated by phosphorylation in a complex mechanism involving multiple phosphorylation sites.


Assuntos
Canais de Cálcio Tipo L , Neurônios , Potenciais de Ação , Animais , Encéfalo , Fosforilação , Ratos
4.
Protein Expr Purif ; 195-196: 106092, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35430350

RESUMO

Mutations in PARK7, the gene encoding the DJ-1 protein, are associated with early onset of Parkinson's disease. The C106 residue of DJ-1 is highly susceptible to oxidation, and its oxidation status is essential for various in vivo neuroprotective roles. Since C106 is readily oxidized to sulfinic acid that is not reduced by dithiothreitol, no method to separate native DJ-1 protein from the oxidized one creates challenges in the in vitro study of the biological relevance of C106-oxidation state. Here, we report an efficient column chromatography method to purify native, C106-sulfinic, and mixed (combination of the priors) forms of DJ-1. This method will be useful for systematic in vitro studies of DJ-1 functions by providing specific native and C106-sulfinic DJ-1 proteins.


Assuntos
Proteínas Oncogênicas , Doença de Parkinson , Cromatografia , Humanos , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Oxirredução , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo
5.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070927

RESUMO

Citric acid (CA), as an organic chelator, plays a vital role in alleviating copper (Cu) stress-mediated oxidative damage, wherein a number of molecular mechanisms alter in plants. However, it remains largely unknown how CA regulates differentially abundant proteins (DAPs) in response to Cu stress in Brassica napus L. In the present study, we aimed to investigate the proteome changes in the leaves of B. L. seedlings in response to CA-mediated alleviation of Cu stress. Exposure of 21-day-old seedlings to Cu (25 and 50 µM) and CA (1.0 mM) for 7 days exhibited a dramatic inhibition of overall growth and considerable increase in the enzymatic activities (POD, SOD, CAT). Using a label-free proteome approach, a total of 6345 proteins were identified in differentially treated leaves, from which 426 proteins were differentially expressed among the treatment groups. Gene ontology (GO) and KEGG pathways analysis revealed that most of the differential abundance proteins were found to be involved in energy and carbohydrate metabolism, photosynthesis, protein metabolism, stress and defense, metal detoxification, and cell wall reorganization. Our results suggest that the downregulation of chlorophyll biosynthetic proteins involved in photosynthesis were consistent with reduced chlorophyll content. The increased abundance of proteins involved in stress and defense indicates that these DAPs might provide significant insights into the adaptation of Brassica seedlings to Cu stress. The abundances of key proteins were further verified by monitoring the mRNA expression level of the respective transcripts. Taken together, these findings provide a potential molecular mechanism towards Cu stress tolerance and open a new route in accelerating the phytoextraction of Cu through exogenous application of CA in B. napus.


Assuntos
Brassica napus/efeitos dos fármacos , Ácido Cítrico/farmacologia , Cobre/toxicidade , Poluentes Ambientais/toxicidade , Proteínas de Plantas/genética , Proteoma/genética , Adaptação Fisiológica , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Catalase/genética , Catalase/metabolismo , Clorofila/biossíntese , Ácido Cítrico/metabolismo , Cobre/metabolismo , Poluentes Ambientais/antagonistas & inibidores , Poluentes Ambientais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Peroxidases/classificação , Peroxidases/genética , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Proteoma/classificação , Proteoma/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Estresse Fisiológico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
6.
Anal Chem ; 92(19): 13144-13154, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32902264

RESUMO

The α-galactosyl epitope is a terminal N-glycan moiety of glycoproteins found in mammals except in humans, and thus, it is recognized as an antigen that provokes an immunogenic response in humans. Accordingly, it is necessary to analyze the α-galactosyl structure in biopharmaceuticals or organ transplants. Due to an identical glycan composition and molecular mass between α-galactosyl N-glycans and hybrid/high-mannose-type N-glycans, it is challenging to characterize α-galactosyl epitopes in N-glycoproteins using mass spectrometry. Here, we describe a method to identify α-galactosyl N-glycopeptides in mice glycoproteins using liquid chromatography with tandem mass spectrometry with higher-energy collisional dissociation (HCD). The first measure was an absence of [YHM] ion peaks in the HCD spectra, which was exclusively observed in hybrid and/or high-mannose-type N-glycopeptides. The second complementary criterion was the ratio of an m/z 528.19 (Hex2HexNAc1) ion to m/z 366.14 (Hex1HexNAc1) ion (Im/z528/Im/z366). The measure of [Im/z528/Im/z366 > 0.3] enabled a clear-cut determination of α-galactosyl N-glycopeptides with high accuracy. In Ggta1 knockout mice, we could not find any α-galactosyl N-glycoproteins identified in WT mice plasma. Using this method, we could screen for α-galactosyl N-glycoproteins from mice spleen, lungs, and plasma samples in a highly sensitive and specific manner. Conclusively, we suggest that this method will provide a robust analytical tool for determination of α-galactosyl epitopes in pharmaceuticals and complex biological samples.


Assuntos
Glicoproteínas/química , Trissacarídeos/sangue , Animais , Cromatografia Líquida , Íons/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Software , Espectrometria de Massas em Tandem , Trissacarídeos/metabolismo
7.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066625

RESUMO

Glechoma hederacea var. longituba (GHL) is one of many herbal plants distributed worldwide and is known to contain various biologically useful antioxidant constituents. GHL has been used in folk remedies for various treatments and as favorable tea beverages. However, research on the precise analysis of ingredients in GHL extracts remains insufficient. In this study, compositional analysis has been conducted on polyphenolic ingredients in GHL hot water extracts. GHL samples collected from growing regions were incubated in hot water at 100 °C for 1 h. The polyphenolic constituents in the hot water extracts were analyzed using high performance liquid chromatography-high resolution mass spectrometry (HPLC-HR MS) and tandem mass spectrometry (HPLC-MS/MS) in negative ion mode. As a result, a total of seven compounds were identified as the major polyphenolic constituents. Interestingly, four constituents out of the identified substances were confirmed to be polyphenol glucuronide conjugates, in which glucuronidation was known to be an important metabolic process in polyphenol aglycone along with methylation and sulphation. This study can be applied for the quality control and standardization of GHL herbal samples and the monitoring of metabolic processes involved in the polyphenolic conjugates.


Assuntos
Glucuronídeos/análise , Lamiaceae/química , Extratos Vegetais/química , Polifenóis/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Glucuronídeos/química , Estrutura Molecular , Extratos Vegetais/análise , Polifenóis/química , Água/química
8.
EMBO J ; 31(23): 4375-87, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-22990236

RESUMO

The positioning of the nucleosome by ATP-dependent remodellers provides the fundamental chromatin environment for the regulation of diverse cellular processes acting on the underlying DNA. Recently, genome-wide nucleosome mapping has revealed more detailed information on the chromatin-remodelling factors. Here, we report that the Schizosaccharomyces pombe CHD remodeller, Hrp3, is a global regulator that drives proper nucleosome positioning and nucleosome stability. The loss of Hrp3 resulted in nucleosome perturbation across the chromosome, and the production of antisense transcripts in the hrp3Δ cells emphasized the importance of nucleosome architecture for proper transcription. Notably, perturbation of the nucleosome in hrp3 deletion mutant was also associated with destabilization of the DNA-histone interaction and cell cycle-dependent alleviation of heterochromatin silencing. Furthermore, the effect of Hrp3 in the pericentric region was found to be accomplished via a physical interaction with Swi6, and appeared to cooperate with other heterochromatin factors for gene silencing. Taken together, our data indicate that a well-positioned nucleosome by Hrp3 is important for the spatial-temporal control of transcription-associated processes.


Assuntos
Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/química , Proteínas de Ligação a DNA/fisiologia , Eucromatina/química , Regulação Fúngica da Expressão Gênica , Heterocromatina/química , Nucleossomos/metabolismo , Schizosaccharomyces/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Genoma Fúngico , Heterocromatina/metabolismo , Histonas/metabolismo , RNA/metabolismo , RNA Antissenso/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Tempo , Transcrição Gênica
9.
J Virol ; 88(19): 11240-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031343

RESUMO

UNLABELLED: Hepatitis C virus (HCV) nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase (RdRp), is the key enzyme for HCV RNA replication. We previously showed that HCV RdRp is phosphorylated by protein kinase C-related kinase 2 (PRK2). In the present study, we used biochemical and reverse-genetics approaches to demonstrate that HCV NS5B phosphorylation is crucial for viral RNA replication in cell culture. Two-dimensional phosphoamino acid analysis revealed that PRK2 phosphorylates NS5B exclusively at its serine residues in vitro and in vivo. Using in vitro kinase assays and mass spectrometry, we identified two phosphorylation sites, Ser29 and Ser42, in the Δ1 finger loop region that interacts with the thumb subdomain of NS5B. Colony-forming assays using drug-selectable HCV subgenomic RNA replicons revealed that preventing phosphorylation by Ala substitution at either Ser29 or Ser42 impairs HCV RNA replication. Furthermore, reverse-genetics studies using HCV infectious clones encoding phosphorylation-defective NS5B confirmed the crucial role of these PRK2 phosphorylation sites in viral RNA replication. Molecular-modeling studies predicted that the phosphorylation of NS5B stabilizes the interactions between its Δ1 loop and thumb subdomain, which are required for the formation of the closed conformation of NS5B known to be important for de novo RNA synthesis. Collectively, our results provide evidence that HCV NS5B phosphorylation has a positive regulatory role in HCV RNA replication. IMPORTANCE: While the role of RNA-dependent RNA polymerases (RdRps) in viral RNA replication is clear, little is known about their functional regulation by phosphorylation. In this study, we addressed several important questions about the function and structure of phosphorylated hepatitis C virus (HCV) nonstructural protein 5B (NS5B). Reverse-genetics studies with HCV replicons encoding phosphorylation-defective NS5B mutants and analysis of their RdRp activities revealed previously unidentified NS5B protein features related to HCV replication and NS5B phosphorylation. These attributes most likely reflect potential structural changes induced by phosphorylation in the Δ1 finger loop region of NS5B with two identified phosphate acceptor sites, Ser29 and Ser42, which may transiently affect the closed conformation of NS5B. Elucidating the effects of dynamic changes in NS5B phosphorylation status during viral replication and their impacts on RNA synthesis will improve our understanding of the molecular mechanisms of NS5B phosphorylation-mediated regulation of HCV replication.


Assuntos
Regulação Viral da Expressão Gênica , Hepacivirus/genética , Proteína Quinase C/genética , RNA Polimerase Dependente de RNA/genética , Serina/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral , Sequência de Aminoácidos , Linhagem Celular Tumoral , Hepacivirus/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Proteína Quinase C/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
10.
Microb Pathog ; 86: 10-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150210

RESUMO

We have recently shown that a mouse lung infection model resulting in acute pneumonia could be used for evaluating the protective immunity induced by mucosal vaccines against Vibrio cholerae. In order to gain insight and better understanding of the pathogenicity of V. cholerae infection, we identified and compared proteins induced by V. cholerae in nasal washes, bronchoalveolar lavages (BAL), and sera. Intranasal administration of V. cholerae increased the concentration of total proteins in nasal washes and BAL fluids, but not in sera. LTQ-Orbitrap hybrid Fourier transform mass spectrometry showed that cytoskeletal proteins, protease inhibitors and anti-inflammatory mediators were present in nasal washes from uninfected mice. The distinctly expressed proteins in nasal washes in response to V. cholerae mainly consisted of protease inhibitors, anti-inflammatory proteins, and anti-microbial proteins. A number of protease inhibitors and anti-inflammatory proteins were selectively expressed in BAL fluids from V. cholerae-infected mice, while cytoskeletal proteins and heat shock proteins were mainly observed in BAL fluids from uninfected mice. A large number of serum complements, protease inhibitors, and acute phase proteins were expressed in V. cholerae-infected mice. Collectively, these results suggest that intranasal administration of V. cholerae leading to acute pneumonia elicited alterations of protein profiles associated with immune homeostasis and host protection in both the mucosal and systemic compartments.


Assuntos
Cólera/microbiologia , Cólera/patologia , Proteoma/análise , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Vibrio cholerae/imunologia , Animais , Líquido da Lavagem Broncoalveolar/química , Cólera/imunologia , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos BALB C , Mucosa Nasal/química , Infecções Respiratórias/imunologia , Soro/química , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2800-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25372672

RESUMO

Helicobacter pylori infection causes a variety of gastrointestinal diseases, including peptic ulcers and gastric cancer. Its colonization of the gastric mucosa of the human stomach is a prerequisite for survival in the stomach. Colonization depends on its motility, which is facilitated by the helical shape of the bacterium. In H. pylori, cross-linking relaxation or trimming of peptidoglycan muropeptides affects the helical cell shape. Csd4 has been identified as one of the cell shape-determining peptidoglycan hydrolases in H. pylori. It is a Zn(2+)-dependent D,L-carboxypeptidase that cleaves the bond between the γ-D-Glu and the mDAP of the non-cross-linked muramyltripeptide (muramyl-L-Ala-γ-D-Glu-mDAP) of the peptidoglycan to produce the muramyldipeptide (muramyl-L-Ala-γ-D-Glu) and mDAP. Here, the crystal structure of H. pylori Csd4 (HP1075 in strain 26695) is reported in three different states: the ligand-unbound form, the substrate-bound form and the product-bound form. H. pylori Csd4 consists of three domains: an N-terminal D,L-carboxypeptidase domain with a typical carboxypeptidase fold, a central ß-barrel domain with a novel fold and a C-terminal immunoglobulin-like domain. The D,L-carboxypeptidase domain recognizes the substrate by interacting primarily with the terminal mDAP moiety of the muramyltripeptide. It undergoes a significant structural change upon binding either mDAP or the mDAP-containing muramyltripeptide. It it also shown that Csd5, another cell-shape determinant in H. pylori, is capable of interacting not only with H. pylori Csd4 but also with the dipeptide product of the reaction catalyzed by Csd4.


Assuntos
Proteínas de Bactérias/química , Carboxipeptidases/química , Infecções por Helicobacter/microbiologia , Helicobacter pylori/química , Oligopeptídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carboxipeptidases/metabolismo , Cristalografia por Raios X , Helicobacter pylori/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ácidos Murâmicos/química , Ácidos Murâmicos/metabolismo , Oligopeptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
12.
Mol Biol Rep ; 41(5): 3499-507, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24615502

RESUMO

Breast cancer is the most common type of cancer in women in many areas and is increasing found in developing countries, where the majority of cases are diagnosed in late stages. Retinoic acids, through their associated nuclear receptors, exert intoxicating effects on cell growth, differentiation and apoptosis, and hold significant promise in relation to cancer therapy and chemoprevention. To enhance our understanding of the molecular mechanisms associated with retinoic acids in the breast cancer cell line MCF-7 in a time-dependent manner, we conducted a proteomic analysis of MCF-7 cells using the 2-DE couple with high-throughput mass spectrometry and bioinformatics tools. In the 2-DE patterns of MCF-7 cells treated with retinoic acid in a time-dependent manner, 35 protein spots were found to be differentially expressed. These were 17 increased, 4 decreased, and 14 unevenly expressed protein spots, all of which were analyzed using LTQ-FTICR mass spectrometry. Furthermore, five candidate proteins, up-regulated, were validated by western blotting. These were nucleoredoxin, latexin, aminomethyltransferase, translationally controlled one tumor protein, and rab GDP dissociation inhibitor ß. These observations represent novel findings leading to new insight into the exact mechanism behind the effect of retinoic acids in MCF-7 cells while also identifying possible therapeutic targets for breast cancer diagnosis and novel drug development paths for the treatment of this disease.


Assuntos
Neoplasias da Mama/metabolismo , Proteoma , Proteômica , Tretinoína/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional/métodos , Feminino , Humanos , Células MCF-7 , Proteômica/métodos , Reprodutibilidade dos Testes
13.
Mol Biol Rep ; 41(2): 671-81, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24357239

RESUMO

The root apex is considered the first sites of aluminum (Al) toxicity and the reduction in root biomass leads to poor uptake of water and nutrients. Aluminum is considered the most limiting factor for plant productivity in acidic soils. Aluminum is a light metal that makes up 7 % of the earth's scab dissolving ionic forms. The inhibition of root growth is recognized as the primary effect of Al toxicity. Seeds of wheat cv. Keumkang were germinated on petridish for 5 days and then transferred hydroponic apparatus which was treated without or with 100 and 150 µM AlCl3 for 5 days. The length of roots, shoots and fresh weight of wheat seedlings were decreased under aluminum stress. The concentration of K(+), Mg(2+) and Ca(2+) were decreased, whereas Al(3+) and P2O5 (-) concentration was increased under aluminum stress. Using confocal microscopy, the fluorescence intensity of aluminum increased with morin staining. A proteome analysis was performed to identify proteins, which are responsible to aluminum stress in wheat roots. Proteins were extracted from roots and separated by 2-DE. A total of 47 protein spots were changed under Al stress. Nineteen proteins were significantly increased such as sadenosylmethionine, oxalate oxidase, malate dehydrogenase, cysteine synthase, ascorbate peroxidase and/or, 28 protein spots were significantly decreased such as heat shock protein 70, O-methytransferase 4, enolase, and amylogenin. Our results highlight the importance and identification of stress and defense responsive proteins with morphological and physiological state under Al stress.


Assuntos
Proteínas de Plantas/biossíntese , Raízes de Plantas/genética , Proteoma , Plântula/genética , Alumínio/toxicidade , Ascorbato Peroxidases/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Triticum/efeitos dos fármacos , Triticum/genética
14.
Mol Biol Rep ; 41(8): 5359-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24958017

RESUMO

Mitochondria are important organelles for cellular respiration within the eukaryotic cell and have many important functions including vitamin synthesis, amino acid metabolism and photorespiration. To investigate the mitochondrial proteome of the roots of wheat seedlings, a systematic and targeted analysis were carried out on the mitochondrial proteome from 15 day-old wheat seedling root material. Mitochondria were isolated by Percoll gradient centrifugation; and extracted proteins were disassociated and analyzed by Tricine SDS-PAGE couple to LTQ-FTICR mass spectrometry. From the isolated the sample, 184 proteins were identified which is composed of 140 proteins as mitochondria and 44 proteins as other subcellular proteins that are predicted by the freeware sub-cellular predictor. The identified proteins in mitochondria were functionally classified into 12 classes using the ProtFun 2.2 servers based on biological processes. Proteins were shown to be involved in amino acid biosynthesis (17.1%), biosynthesis of cofactors (6.4%), cell envelope (11.4%), central intermediary metabolism (10%), energy metabolism (20%), fatty acid metabolism (0.7%), purines and pyrimidines (5.7%), regulatory functions (0.7%), replication and transcription (1.4%), translation (22.1%), transport and binding (1.4%), and unknown (2.8%). These results indicate that many of the protein components present and functions of identifying proteins are common to other profiles of mitochondrial proteins performed to date. These results are provided the extensive and noble clues, to our knowledge, of mitochondrial proteins from wheat roots.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Triticum/metabolismo , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Espectrometria de Massas , Proteínas Mitocondriais/genética , Organelas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Proteoma/genética , Proteômica , Triticum/genética
15.
Biodegradation ; 25(1): 55-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23592331

RESUMO

Triclosan, a widely used antimicrobial agent, is an emerging contaminant in the environment. Despite its antimicrobial character, biodegradation of triclosan has been observed in pure cultures, soils and activated sludge. However, little is known about the microorganisms responsible for the degradation in mixed cultures. In this study, active triclosan degraders in a triclosan-degrading enrichment culture were identified using stable isotope probing (SIP) with universally (13)C-labeled triclosan. Eleven clones contributed from active microorganisms capable of uptake the (13)C in triclosan were identified. None of these clones were similar to known triclosan-degraders/utilizers. These clones distributed among α-, ß-, or γ-Proteobacteria: one belonging to Defluvibacter (α-Proteobacteria), seven belonging to Alicycliphilus (ß-Proteobacteria), and three belonging to Stenotrophomonas (γ-Proteobacteria). Successive additions of triclosan caused a significant shift in the microbial community structure of the enrichment culture, with dominant ribotypes belonging to the genera Alicycliphilus and Defluvibacter. Application of SIP has successfully identified diverse uncultivable triclosan-degrading microorganisms in an activated sludge enrichment culture. The results of this study not only contributed to our understanding of the microbial ecology of triclosan biodegradation in wastewater, but also suggested that triclosan degraders are more phylogenetically diverse than previously reported.


Assuntos
Alphaproteobacteria/isolamento & purificação , Anti-Infecciosos Locais/metabolismo , Betaproteobacteria/isolamento & purificação , Poluentes Ambientais/metabolismo , Gammaproteobacteria/isolamento & purificação , Triclosan/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Biodegradação Ambiental , Isótopos de Carbono , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Filogenia , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Esgotos/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-38376819

RESUMO

Human intestinal epithelial cells (IECs) play an important role in maintaining gut homeostasis by producing antimicrobial peptides (AMPs). Bacillus subtilis, a commensal bacterium, is considered a probiotic. Although its protective effects on intestinal health are widely reported, the key component of B. subtilis responsible for its beneficial effects remains elusive. In this study, we tried to identify the key molecules responsible for B. subtilis-induced AMPs and their molecular mechanisms in a human IEC line, Caco-2. B. subtilis increased human beta defensin (HBD)-2 mRNA expression in a dose- and time-dependent manner. Among the B. subtilis microbe-associated molecular patterns, lipoprotein (LPP) substantially increased the mRNA expression and protein production of HBD-2, whereas lipoteichoic acid and peptidoglycan did not show such effects. Those results were confirmed in primary human IECs. In addition, both LPP recognition and HBD-2 secretion mainly took place on the apical side of fully differentiated and polarized Caco-2 cells through Toll-like receptor 2-mediated JNK/p38 MAP kinase/AP-1 and NF-κB pathways. HBD-2 efficiently inhibited the growth of the intestinal pathogens Staphylococcus aureus and Bacillus cereus. Furthermore, LPPs pre-incubated with lipase or proteinase K decreased LPP-induced HBD-2 expression, suggesting that the lipid and protein moieties of LPP are crucial for HBD-2 expression. Q Exactive Plus mass spectrometry identified 35 B. subtilis LPP candidates within the LPP preparation, and most of them were ABC transporters. Taken together, these results suggest that B. subtilis promotes HBD-2 secretion in human IECs mainly with its LPPs, which might enhance the protection from intestinal pathogens.

17.
J Biol Chem ; 287(22): 18398-407, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22493283

RESUMO

mTOR complex 1 (mTORC1) is a multiprotein complex that integrates diverse signals including growth factors, nutrients, and stress to control cell growth. Raptor is an essential component of mTORC1 that functions to recruit specific substrates. Recently, Raptor was suggested to be a key target of regulation of mTORC1. Here, we show that Raptor is phosphorylated by JNK upon osmotic stress. We identified that osmotic stress induces the phosphorylation of Raptor at Ser-696, Thr-706, and Ser-863 using liquid chromatography-tandem mass spectrometry. We found that JNK is responsible for the phosphorylation. The inhibition of JNK abolishes the phosphorylation of Raptor induced by osmotic stress in cells. Furthermore, JNK physically associates with Raptor and phosphorylates Raptor in vitro, implying that JNK is responsible for the phosphorylation of Raptor. Finally, we found that osmotic stress activates mTORC1 kinase activity in a JNK-dependent manner. Our findings suggest that the molecular link between JNK and Raptor is a potential mechanism by which stress regulates the mTORC1 signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pressão Osmótica , Serina-Treonina Quinases TOR/metabolismo , Sequência de Bases , Linhagem Celular , Imunoprecipitação da Cromatina , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Fosforilação , RNA Interferente Pequeno , Proteína Regulatória Associada a mTOR , Espectrometria de Massas em Tandem
18.
Anal Bioanal Chem ; 405(16): 5501-17, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23657447

RESUMO

Mulitpotent mesenchymal stem cells (MSCs) derived from human bone marrow are promising candidates for the development of cell therapeutic strategies. MSC surface protein profiles provide novel biological knowledge concerning the proliferation and differentiation of these cells, including the potential for identifying therapeutic targets. Basic fibroblast growth factor (bFGF) affects cell surface proteins, which are associated with increased growth rate, differentiation potential, as well as morphological changes of MSCs in vitro. Cell surface proteins were isolated using a biotinylation-mediated method and identified using a combination of one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry. The resulting gel lines were cut into 20 bands and digested with trypsin. Each tryptic fragment was analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry. Proteins were identified using the Mascot search program and the International Protein Index human database. Noble MSC surface proteins (n = 1,001) were identified from cells cultured either with (n = 857) or without (n = 667) bFGF-containing medium in three independent experiments. The proteins were classified using FatiGO to elucidate their function. We also confirmed the proteomics results using Western blotting and immunofluorescence microscopic analysis. The nature of the proteins identified makes it clear that MSCs express a wide variety of signaling molecules, including those related to cell differentiation. Among the latter proteins, four Ras-related Rab proteins, laminin-R, and three 14-3-3 proteins that were fractionated from MSCs cultured on bFGF-containing medium are implicated in bFGF-induced signal transduction of MSCs. Consequently, these finding provide insight into the understanding of the surface proteome of human MSCs.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Proteínas/análise , Proteoma/análise , Proteômica/métodos , Proteínas 14-3-3/análise , Proteínas 14-3-3/metabolismo , Diferenciação Celular , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Proteínas/classificação , Proteínas/metabolismo , Receptores de Laminina/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
19.
Rice (N Y) ; 16(1): 23, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145322

RESUMO

BACKGROUND: Rice is colonized by plant growth promoting bacteria such as Methylobacterium leading to mutually beneficial plant-microbe interactions. As modulators of the rice developmental process, Methylobacterium influences seed germination, growth, health, and development. However, little is known about the complex molecular responsive mechanisms modulating microbe-driven rice development. The application of proteomics to rice-microbe interactions helps us elucidate dynamic proteomic responses mediating this association. RESULTS: In this study, a total of 3908 proteins were detected across all treatments of which the non-inoculated IR29 and FL478 share up to 88% similar proteins. However, intrinsic differences appear in IR29 and FL478 as evident in the differentially abundant proteins (DAPs) and their associated gene ontology terms (GO). Successful colonization of M. oryzae CBMB20 in rice resulted to dynamic shifts in proteomes of both IR29 and FL478. The GO terms of DAPs for biological process in IR29 shifts in abundance from response to stimulus, cellular amino acid metabolic process, regulation of biological process and translation to cofactor metabolic process (6.31%), translation (5.41%) and photosynthesis (5.41%). FL478 showed a different shift from translation-related to response to stimulus (9%) and organic acid metabolic acid (8%). Both rice genotypes also showed a diversification of GO terms due to the inoculation of M. oryzae CBMB20. Specific proteins such as peptidyl-prolyl cis-trans isomerase (A2WJU9), thiamine thiazole synthase (A2YM28), and alanine-tRNA ligase (B8B4H5) upregulated in IR29 and FL478 indicate key mechanisms of M. oryzae CBMB20 mediated plant growth promotion in rice. CONCLUSIONS: Interaction of Methylobacterium oryzae CBMB20 to rice results in a dynamic, similar, and plant genotype-specific proteomic changes supporting associated growth and development. The multifaceted CBMB20 expands the gene ontology terms and increases the abundance of proteins associated with photosynthesis, diverse metabolic processes, protein synthesis and cell differentiation and fate potentially attributed to the growth and development of the host plant. The specific proteins and their functional relevance help us understand how CBMB20 mediate growth and development in their host under normal conditions and potentially link subsequent responses when the host plants are exposed to biotic and abiotic stresses.

20.
Environ Sci Pollut Res Int ; 30(54): 115461-115479, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37882925

RESUMO

Cadmium (Cd) is a toxic substance that is uptake by plants from soils, Cd easily transfers into the food chain. Considering global food security, eco-friendly, cost-effective, and metal detoxification strategies are highly demandable for sustainable food crop production. The purpose of this study was to investigate how citric acid (CA) alleviates or tolerates Cd toxicity in Brassica using a proteome approach. In this study, the global proteome level was significantly altered under Cd toxicity with or without CA supplementation in Brassica. A total of 4947 proteins were identified using the gel-free proteome approach. Out of these, 476 proteins showed differential abundance between the treatment groups, wherein 316 were upregulated and 160 were downregulated. The gene ontology analysis reveals that differentially abundant proteins were involved in different biological processes including energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense, heavy metal detoxification, plant development, and cytoskeleton and cell wall structure in Brassica leaves. Interestingly, several candidate proteins such as superoxide dismutase (A0A078GZ68) L-ascorbate peroxidase 3 (A0A078HSG4), glutamine synthetase (A0A078HLB2), glutathione S-transferase DHAR1 (A0A078HPN8), glutamine synthetase (A0A078HLB2), cysteine synthase (A0A078GAD3), S-adenosylmethionine synthase 2 (A0A078JDL6), and thiosulfate/3-mercaptopyruvate sulfur transferase 2 (A0A078H905) were involved in antioxidant defense system and sulfur assimilation-involving Cd-detoxification process in Brassica. These findings provide new proteome insights into CA-mediated Cd-toxicity alleviation in Brassica, which might be useful to oilseed crop breeders for enhancing heavy metal tolerance in Brassica using the breeding program, with sustainable and smart Brassica production in a metal-toxic environment.


Assuntos
Brassica napus , Brassica , Metais Pesados , Cádmio/análise , Antioxidantes/metabolismo , Brassica napus/metabolismo , Proteoma/metabolismo , Ácido Cítrico/metabolismo , Glutamato-Amônia Ligase/metabolismo , Melhoramento Vegetal , Metais Pesados/metabolismo , Brassica/metabolismo , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA