Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Opt Lett ; 48(4): 992-995, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790997

RESUMO

We present spectrometer-based wavelength interrogation surface plasmon resonance imaging (SPRi) without mechanical scanning. A polarized broadband light source illuminates an object via a gold-coated prism; the reflected light is spatially modulated by a digital mirror device (DMD) and then measured with a spectrometer. Reflectance spectral images are reconstructed via the Hadamard transform (HT), and a refractive index (RI) map is visualized from the reflectance spectral images by analyzing the resonance peak shift of the spectrum at each image pixel. We demonstrate the feasibility of our method by evaluating the resolution, sensitivity, and dynamic detection range, experimentally obtained as ∼2.203 × 10-6 RI unit (RIU), ∼3,407 nm/RIU, and ∼0.1403 RIU, respectively. Furthermore, simulations are performed to validate the experimental results.

2.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069439

RESUMO

Peanut (Arachis hypogaea L.) is a globally cultivated crop of significant economic and nutritional importance. The role of gibberellic-acid-stimulated Arabidopsis (GASA) family genes is well established in plant growth, development, and biotic and abiotic stress responses. However, there is a gap in understanding the function of GASA proteins in cultivated peanuts, particularly in response to abiotic stresses such as drought and salinity. Thus, we conducted comprehensive in silico analyses to identify and verify the existence of 40 GASA genes (termed AhGASA) in cultivated peanuts. Subsequently, we conducted biological experiments and performed expression analyses of selected AhGASA genes to elucidate their potential regulatory roles in response to drought and salinity. Phylogenetic analysis revealed that AhGASA genes could be categorized into four distinct subfamilies. Under normal growth conditions, selected AhGASA genes exhibited varying expressions in young peanut seedling leaves, stems, and roots tissues. Notably, our findings indicate that certain AhGASA genes were downregulated under drought stress but upregulated under salt stress. These results suggest that specific AhGASA genes are involved in the regulation of salt or drought stress. Further functional characterization of the upregulated genes under both drought and salt stress will be essential to confirm their regulatory roles in this context. Overall, our findings provide compelling evidence of the involvement of AhGASA genes in the mechanisms of stress tolerance in cultivated peanuts. This study enhances our understanding of the functions of AhGASA genes in response to abiotic stress and lays the groundwork for future investigations into the molecular characterization of AhGASA genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arachis/metabolismo , Filogenia , Proteínas de Arabidopsis/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
3.
Sensors (Basel) ; 22(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35957229

RESUMO

This paper proposes a simple, high-efficiency refractive index (RI) sensor, with a structure based on the planar lightwave circuit (PLC) probe type. The optical sensor has a 1 × 2 splitter structure with reference and sensing channels, each consisting of a U-shaped waveguide structure that is configured by connecting C bends. This design allows for the sensor device to have a probe structure wherein the surface interconnected with activity devices (i.e., an optical source and optical detector) is placed on one side. The reference channel is bent with a minimum optical loss, and the sensing channel has a bent structure, involving a C-bend waveguide with a maximum loss. The C-bend waveguide with a maximum loss is conformally aligned to have a trench structure with the same bending radius, designed to selectively expose the sidewall of the core layer. The local index contrast varies depending on the material in contact with the trench, resulting in a change in the optical output power of the waveguide. The sensitivity of the proposed sensor was 0 and 2070 µW/refractive index unit (RIU) for the reference and sensing channels, respectively, as the RI changed from 1.385 to 1.445 at a 1550 nm wavelength. These results suggest that the proposed structure enables efficient RI measurement through the use of a simple dip-type method.


Assuntos
Refratometria , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos
4.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409041

RESUMO

Anthocyanins are generally accumulated within a few layers, including the epidermal cells of leaves and stems in plants. Solanum tuberosum cv. 'Jayoung' (hereafter, JY) is known to accumulate anthocyanin both in inner tissues and skins. We discovered that anthocyanin accumulation in the inner tissues of JY was almost diminished (more than 95% was decreased) in tuber induction condition. To investigate the transcriptomic mechanism of anthocyanin accumulation in JY flesh, which can be modulated by growth condition, we performed mRNA sequencing with white-colored flesh tissue of Solanum tuberosum cv. 'Atlantic' (hereafter, 'Daeseo', DS) grown under canonical growth conditions, a JY flesh sample grown under canonical growth conditions, and a JY flesh sample grown under tuber induction conditions. We could identify 36 common DEGs (differentially expressed genes) in JY flesh from canonical growth conditions that showed JY-specifically increased or decreased expression level. These genes were enriched with flavonoid biosynthetic process terms in GO analysis, as well as gene set enrichment analysis (GSEA) analysis. Further in silico analysis on expression levels of anthocyanin biosynthetic genes including rate-limiting genes such as StCHS and StCHI followed by RT-PCR and qRT-PCR analysis showed a strong positive correlation with the observed phenotypes. Finally, we identified StWRKY44 from 36 common DEGs as a possible regulator of anthocyanin accumulation, which was further supported by network analysis. In conclusion, we identified StWRKY44 as a putative regulator of tuber-induction-dependent anthocyanin accumulation.


Assuntos
Antocianinas , Solanum tuberosum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Transcriptoma
5.
Mol Plant Microbe Interact ; 33(8): 1025-1028, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32310703

RESUMO

Phytophthora infestans is a devastating pathogen causing potato late blight (Solanum tuberosum). Here we report the sequencing, assembly and genome annotation for two Phytophthora infestans isolates sampled in Republic of Korea. Genome sequencing was carried out using long read (Oxford Nanopore) and short read (Illumina Nextseq) sequencing technologies that significantly improved the contiguity and quality of P. infestans genome assembly. Our resources would help researchers better understand the molecular mechanisms by which P. infestans causes late blight disease in the future.


Assuntos
Genoma , Phytophthora infestans , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Anotação de Sequência Molecular , Phytophthora infestans/genética , Phytophthora infestans/patogenicidade
6.
J Exp Bot ; 67(5): 1519-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26733692

RESUMO

To gain insights into the regulatory networks related to anthocyanin biosynthesis and identify key regulatory genes, we performed an integrated analysis of the transcriptome and metabolome in sprouts germinated from three colored potato cultivars: light-red Hongyoung, dark-purple Jayoung, and white Atlantic. We investigated transcriptional and metabolic changes using statistical analyses and gene-metabolite correlation networks. Transcript and metabolite profiles were generated through high-throughput RNA-sequencing data analysis and ultraperformance liquid chromatography quadrupole time-of-flight tandem mass spectrometry, respectively. The identification and quantification of changes in anthocyanin were performed using molecular formula-based mass accuracy and specific features of their MS(2) spectra. Correlation tests of anthocyanin contents and transcriptional changes showed 823 strong correlations (correlation coefficient, R (2)>0.9) between 22 compounds and 119 transcripts categorized into flavonoid metabolism, hormones, transcriptional regulation, and signaling. The connection network of anthocyanins and genes showed a regulatory system involved in the pigmentation of light-red Hongyoung and dark-purple Jayoung potatoes, suggesting that this systemic approach is powerful for investigations into novel genes that are potential targets for the breeding of new valuable potato cultivars.


Assuntos
Redes Reguladoras de Genes , Metaboloma/genética , Pigmentação/genética , Solanum tuberosum/genética , Transcriptoma/genética , Antocianinas/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Plant Cell Rep ; 35(10): 2113-23, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27417695

RESUMO

KEY MESSAGE: Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.


Assuntos
Genoma de Cloroplastos , Hibridização Genética , Solanum/genética , Sequência de Bases , Códon/genética , Cruzamentos Genéticos , DNA Circular/genética , Marcadores Genéticos , Variação Genética , Genótipo , Mutação INDEL/genética , Filogenia , Reação em Cadeia da Polimerase , Sequências de Repetição em Tandem/genética
8.
BMC Genet ; 14: 51, 2013 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23758607

RESUMO

BACKGROUND: Conserved ortholog set (COS) markers are an important functional genomics resource that has greatly improved orthology detection in Asterid species. A comprehensive list of these markers is available at Sol Genomics Network (http://solgenomics.net/) and many of these have been placed on the genetic maps of a number of solanaceous species. RESULTS: We amplified over 300 COS markers from eight potato accessions involving two diploid landraces of Solanum tuberosum Andigenum group (formerly classified as S. goniocalyx, S. phureja), and a dihaploid clone derived from a modern tetraploid cultivar of S. tuberosum and the wild species S. berthaultii, S. chomatophilum, and S. paucissectum. By BLASTn (Basic Local Alignment Search Tool of the NCBI, National Center for Biotechnology Information) algorithm we mapped the DNA sequences of these markers into the potato genome sequence. Additionally, we mapped a subset of these markers genetically in potato and present a comparison between the physical and genetic locations of these markers in potato and in comparison with the genetic location in tomato. We found that most of the COS markers are single-copy in the reference genome of potato and that the genetic location in tomato and physical location in potato sequence are mostly in agreement. However, we did find some COS markers that are present in multiple copies and those that map in unexpected locations. Sequence comparisons between species show that some of these markers may be paralogs. CONCLUSIONS: The sequence-based physical map becomes helpful in identification of markers for traits of interest thereby reducing the number of markers to be tested for applications like marker assisted selection, diversity, and phylogenetic studies.


Assuntos
Sequência Conservada , Genoma de Planta , Solanum tuberosum/genética , Evolução Molecular , Ligação Genética
9.
Front Plant Sci ; 14: 1188149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528970

RESUMO

Cytoplasmic male sterility (CMS) is predominantly used for F1 hybrid breeding and seed production in Sorghum. DNA markers to distinguish between normal fertile (CMS-N) and sterile (CMS-S) male cytoplasm can facilitate F1 hybrid cultivar development in Sorghum breeding programs. In this study, the complete chloroplast (cp) genome sequences of CMS-S and Korean Sorghum cultivars were obtained using next-generation sequencing. The de novo assembled genome size of ATx623, the CMS-S line of the chloroplast, was 140,644bp. When compared to the CMS-S and CMS-N cp genomes, 19 single nucleotide polymorphisms (SNPs) and 142 insertions and deletions (InDels) were identified, which can be used for marker development for breeding, population genetics, and evolution studies. Two InDel markers with sizes greater than 20 bp were developed to distinguish cytotypes based on the copy number variation of lengths as 28 and 22 bp tandem repeats, respectively. Using the newly developed InDel markers with five pairs of CMS-S and their near isogenic maintainer line, we were able to easily identify their respective cytotypes. The InDel markers were further examined and applied to 1,104 plants from six Korean Sorghum cultivars to identify variant cytotypes. Additionally, the phylogenetic analysis of seven Sorghum species with complete cp genome sequences, including wild species, indicated that CMS-S and CMS-N contained Milo and Kafir cytotypes that might be hybridized from S. propinquum and S. sudanese, respectively. This study can facilitate F1 hybrid cultivar development by providing breeders with reliable tools for marker-assisted selection to breed desirable Sorghum varieties.

10.
Antioxidants (Basel) ; 12(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37237976

RESUMO

Alzheimer's disease, a major cause of dementia, is characterized by impaired cholinergic function, increased oxidative stress, and amyloid cascade induction. Sesame lignans have attracted considerable attention owing to their beneficial effects on brain health. This study investigated the neuroprotective potential of lignan-rich sesame cultivars. Among the 10 sesame varieties studied, Milyang 74 (M74) extracts exhibited the highest total lignan content (17.71 mg/g) and in vitro acetylcholinesterase (AChE) inhibitory activity (66.17%, 0.4 mg/mL). M74 extracts were the most effective in improving cell viability and inhibiting reactive oxygen species (ROS) and malondialdehyde (MDA) generation in amyloid-ß25-35 fragment-treated SH-SY5Y cells. Thus, M74 was used to evaluate the nootropic effects of sesame extracts and oil on scopolamine (2 mg/kg)-induced memory impairment in mice compared to the control cultivar (Goenback). Pretreatment with the M74 extract (250 and 500 mg/kg) and oil (1 and 2 mL/kg) effectively improved memory disorder in mice (demonstrated by the passive avoidance test), inhibited AChE, and enhanced acetylcholine (Ach) levels. Moreover, immunohistochemistry and Western blot results showed that the M74 extract and oil reversed the scopolamine-induced increase in APP, BACE-1, and presenilin expression levels in the amyloid cascade and decreased BDNF and NGF expression levels in neuronal regeneration.

11.
Front Genet ; 14: 1289793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148976

RESUMO

Sesame (Sesamum indicum L.), an oilseed crop, is gaining worldwide recognition for its healthy functional ingredients as consumption increases. The content of lignans, known for their antioxidant and anti-inflammatory effects, is a key agronomic trait that determines the industrialization of sesame. However, the study of the genetics and physiology of lignans in sesame is challenging, as they are influenced by multiple genes and environmental factors, therefore, the understanding of gene function and synthetic pathways related to lignan in sesame is still limited. To address these knowledge gaps, we conducted genetic analyses using F7 recombinant inbred line (RIL) populations derived from Goenbaek and Gomazou as low and high lignin content variants, respectively. Using the QTL-seq approach, we identified three loci, qLignan1-1, qLignan6-1, and qLignan11-1, that control lignan content, specifically sesamin and sesamolin. The allelic effect between loci was evaluated using the RIL population. qLignan6-1 had an additive effect that increased lignan content when combined with the other two loci, suggesting that it could be an important factor in gene pyramiding for the development of high-lignan varieties. This study not only highlights the value of sesame lignan, but also provides valuable insights for the development of high-lignan varieties through the use of DNA markers in breeding strategies. Overall, this research contributes to our understanding of the importance of sesame oil and facilitates progress in sesame breeding for improved lignan content.

12.
Sci Rep ; 12(1): 10462, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729234

RESUMO

Characterizing the genetic diversity and population structure of breeding materials is essential for breeding to improve crop plants. The potato is an important non-cereal food crop worldwide, but breeding potatoes remains challenging owing to their auto-tetraploidy and highly heterozygous genome. We evaluated the genetic structure of a 110-line Korean potato germplasm using the SolCAP 8303 single nucleotide polymorphism (SNP) Infinium array and compared it with potato clones from other countries to understand the genetic landscape of cultivated potatoes. Following the tetraploid model, we conducted population structure analysis, revealing three subpopulations represented by two Korean potato groups and one separate foreign potato group within 110 lines. When analyzing 393 global potato clones, country/region-specific genetic patterns were revealed. The Korean potato clones exhibited higher heterozygosity than those from Japan, the United States, and other potato landraces. We also employed integrated extended haplotype homozygosity (iHS) and cross-population extended haplotype homozygosity (XP-EHH) to identify selection signatures spanning candidate genes associated with biotic and abiotic stress tolerance. Based on the informativeness of SNPs for dosage genotyping calls, 10 highly informative SNPs discriminating all 393 potatoes were identified. Our results could help understanding a potato breeding history that reflects regional adaptations and distinct market demands.


Assuntos
Solanum tuberosum , Células Clonais , Variação Genética , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Solanum tuberosum/genética , Tetraploidia , Estados Unidos
13.
Sci Rep ; 12(1): 8659, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606486

RESUMO

Interspecific somatic hybridization has been performed in potato breeding experiments to increase plant resistance against biotic and abiotic stress conditions. We analyzed the mitochondrial and plastid genomes and 45S nuclear ribosomal DNA (45S rDNA) for the cultivated potato (S. tuberosum, St), wild potato (S. commersonii, Sc), and their somatic hybrid (StSc). Complex genome components and structure, such as the hybrid form of 45S rDNA in StSc, unique plastome in Sc, and recombinant mitogenome were identified. However, the mitogenome exhibited dynamic multipartite structures in both species as well as in the somatic hybrid. In St, the mitogenome is 756,058 bp and is composed of five subgenomes ranging from 297,014 to 49,171 bp. In Sc, it is 552,103 bp long and is composed of two sub-genomes of 338,427 and 213,676 bp length. StSc has 447,645 bp long mitogenome with two subgenomes of length 398,439 and 49,206 bp. The mitogenome structure exhibited dynamic recombination mediated by tandem repeats; however, it contained highly conserved genes in the three species. Among the 35 protein-coding genes of the StSc mitogenome, 21 were identical for all the three species, and 12 and 2 were unique in Sc and St, respectively. The recombinant mitogenome might be derived from homologous recombination between both species during somatic hybrid development.


Assuntos
Genoma Mitocondrial , Solanum tuberosum , Solanum , DNA Ribossômico , Genoma Mitocondrial/genética , Hibridização Genética , Melhoramento Vegetal , Solanum/genética , Solanum tuberosum/genética
14.
Plant Pathol J ; 38(5): 541-549, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36221926

RESUMO

Potato late blight caused by Phytophthora infestans is a destructive disease in Korea. To elucidate the genomic variation of the mitochondrial (mt) genome, we assembled its complete mt genome and compared its sequence among different haplotypes. The mt genome sequences of four Korean P. infestans isolates were revealed by Illumina HiSeq. The size of the circular mt genome of the four major genotypes, KR_1_A1, KR_2_A2, SIB-1, and US-11, was 39,872, 39,836, 39,872, and 39,840 bp, respectively. All genotypes contained the same 61 genes in the same order, comprising two RNA-encoding genes, 16 ribosomal genes, 25 transfer RNA, 17 genes encoding electron transport and ATP synthesis, 11 open reading frames of unknown function, and one protein import-related gene, tatC. The coding region comprised 91% of the genome, and GC content was 22.3%. The haplotypes were further analyzed based on sequence polymorphism at two hypervariable regions (HVRi), carrying a 2 kb insertion/deletion sequence, and HVRii, carrying 36 bp variable number tandem repeats (VNTRs). All four genotypes carried the 2 kb insertion/deletion sequence in HVRi, whereas HVRii had two VNTRs in KR_1_A1 and SIB-1 but three VNTRs in US-11 and KR_2_A2. Minimal spanning network and phylogenetic analysis based on 5,814 bp of mtDNA sequences from five loci, KR_1_A1 and SIB-1 were classified as IIa-6 haplotype, and isolates KR_1_A2 and US-11 as haplotypes IIa-5 and IIb-2, respectively. mtDNA sequences of KR_1_A1 and SIB-1 shared 100% sequence identity, and both were 99.9% similar to those of KR_2_A2 and US-11.

15.
Plant J ; 61(4): 591-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19929877

RESUMO

We conducted a sequence-level comparative analyses, at the scale of complete bacterial artificial chromosome (BAC) clones, between the genome of the most economically important Brassica species, Brassica napus (oilseed rape), and those of Brassica rapa, the genome of which is currently being sequenced, and Arabidopsis thaliana. We constructed a new B. napus BAC library and identified and sequenced clones that contain homoeologous regions of the genome including stearoyl-ACP desaturase-encoding genes. We sequenced the orthologous region of the genome of B. rapa and conducted comparative analyses between the Brassica sequences and those of the orthologous region of the genome of A. thaliana. The proportion of genes conserved (approximately 56%) is lower than has been reported previously between A. thaliana and Brassica (approximately 66%). The gene models for sets of conserved genes were used to determine the extent of nucleotide conservation of coding regions. This was found to be 84.2 +/- 3.9% and 85.8 +/- 3.7% between the B. napus A and C genomes, respectively, and that of A. thaliana, which is consistent with previous results for other Brassica species, and 97.5 +/- 3.1% between the B. napus A genome and B. rapa, and 93.1 +/- 4.9% between the B. napus C genome and B. rapa. The divergence of the B. napus genes from the A genome and the B. rapa genes was greater than anticipated and indicates that the A genome ancestor of the B. napus cultivar studied was relatively distantly related to the cultivar of B. rapa selected for genome sequencing.


Assuntos
Brassica napus/genética , Brassica rapa/genética , Hibridização Genômica Comparativa , Ácidos Graxos Dessaturases/genética , Genoma de Planta , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica napus/enzimologia , Brassica rapa/enzimologia , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , DNA de Plantas/genética , Biblioteca Gênica , Genes de Plantas , Modelos Genéticos , Filogenia , Análise de Sequência de DNA
16.
Sci Rep ; 11(1): 16630, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404839

RESUMO

Cultivated peanut (Arachis hypogaea) is one of the important legume oilseed crops. Cultivated peanut has a narrow genetic base. Therefore, it is necessary to widen its genetic base and diversity for additional use. The objective of the present study was to assess the genetic diversity and population structure of 96 peanut genotypes with 9478 high-resolution SNPs identified from a 48 K 'Axiom_Arachis' SNP array. Korean set genotypes were also compared with a mini-core of US genotypes. These sets of genotypes were used for genetic diversity analysis. Model-based structure analysis at K = 2 indicated the presence of two subpopulations in both sets of genotypes. Phylogenetic and PCA analysis clustered these genotypes into two major groups. However, clear genotype distribution was not observed for categories of subspecies, botanical variety, or origin. The analysis also revealed that current Korean genetic resources lacked variability compared to US mini-core genotypes. These results suggest that Korean genetic resources need to be expanded by creating new allele combinations and widening the genetic pool to offer new genetic variations for Korean peanut improvement programs. High-quality SNP data generated in this study could be used for identifying varietal contaminant, QTL, and genes associated with desirable traits by performing mapping, genome-wide association studies.


Assuntos
Arachis/genética , Produtos Agrícolas/genética , Genes de Plantas , Variação Genética , Polimorfismo de Nucleotídeo Único , Análise de Variância , Arachis/classificação , Marcadores Genéticos , Filogenia , Análise de Componente Principal , Especificidade da Espécie
17.
Front Plant Sci ; 12: 604709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664756

RESUMO

Phytophthora blight (PB) caused by Phytophthora nicotianae is a highly destructive disease in sesame (Sesamum indicum L.). In this study, we used linkage mapping and genome-wide association study (GWAS) to identify quantitative trait loci (QTL) and candidate genes associated with PB resistance. The QTL mapping in 90 RILs of the Goenbaek × Osan cross using genotyping-by-sequencing detected significant QTLs for PB resistance on chromosome 10, explaining 12.79%-13.34% of phenotypic variation. Association of this locus to PB resistance was also revealed through bulked segregant analysis in second RIL population (Goenbaek × Milsung cross) comprising 188 RILs. The GWAS of 87 sesame accessions evaluated against three P. nicotianae isolates identified 29 SNPs on chromosome 10 significantly associated with PB resistance. These SNPs were located within a 0.79 Mb region, which co-located with the QTL intervals identified in RIL populations, and hence scanned for identifying candidate genes. This region contained several defense-related candidate R genes, five of which were selected for quantitative expression analysis. One of these genes, SIN_1019016 was found to show significantly higher expression in the resistant parent compared to that in the susceptible parents and selected RILs. Paired-end sequencing of the gene SIN_1019016 in parental cultivars revealed two synonymous SNPs between Goenbaek and Osan in exon 2 of coding DNA sequence. These results suggested SIN_1019016 as one of the candidate gene conferring PB resistance in sesame. The findings from this study will be useful in the marker-assisted selection as well as the functional analysis of PB resistance candidate gene(s) in sesame.

18.
Physiol Plant ; 138(4): 520-33, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20059737

RESUMO

Plants synthesize compatible solutes such as glycinebetaine (GB) in response to abiotic stresses. To evaluate the synergistic and protective effect of GB, transgenic potato plants expressing superoxide dismutase (SOD) and ascorbate peroxidase (APX) targeting to chloroplasts (referred to as SSA plants) were retransformed with a bacterial choline oxidase (codA) gene to synthesize GB in chloroplast in naturally occurring non-accumulator potato plants (including SSA) under the control of the stress-inducible SWPA2 promoter (referred to as SSAC plants). GB accumulation resulted in enhanced protection of these SSAC plants and lower levels of H(2)O(2) compared with SSA and non-transgenic (NT) plants after methyl viologen (MV)-mediated oxidative stress. Additionally, SSAC plants demonstrated synergistically enhanced tolerance to salt and drought stresses at the whole-plant level. GB accumulation in SSAC plants helped to maintain higher activities of SOD, APX and catalase following oxidative, salt and drought stress treatments than is observed in SSA and NT plants. Conclusively, GB accumulation in SSAC plants along with overexpression of antioxidant genes rendered the plants tolerant to multiple environmental stresses in a synergistic fashion.


Assuntos
Oxirredutases do Álcool/metabolismo , Cloroplastos/enzimologia , Peroxidases/metabolismo , Solanum tuberosum/enzimologia , Superóxido Dismutase/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Oxirredutases do Álcool/genética , Ascorbato Peroxidases , Betaína/metabolismo , Western Blotting , Cloroplastos/genética , Secas , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Paraquat/farmacologia , Peroxidases/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/farmacologia , Solanum tuberosum/genética , Superóxido Dismutase/genética , Água/farmacologia
19.
Mitochondrial DNA B Resour ; 3(1): 198-199, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33474116

RESUMO

We report two complete mitochondrial genome sequences of a tuber-bearing wild potato species (Solanum commersonii). The genomes are circular DNA molecules with lengths of 213,676 bp and 338,427 bp containing 80 nonredundant genes totally, including 34 protein-coding genes, 25 hypothetical open reading frames, 18 tRNA genes, and 3 rRNA genes. Phylogenetic analysis using common protein-coding sequences confirmed that S. commersonii belongs to the Solanoideae subfamily in the Solanaceae family.

20.
Mitochondrial DNA B Resour ; 3(2): 755-757, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-33474312

RESUMO

Solanum hougasii is a wild tuber-bearing species belonging to the family Solanaceae. The complete chloroplast genome of S. hougasii was constituted by de novo assembly, using a small amount of whole genome sequencing data. The chloroplast genome of S. hougasii was a circular DNA molecule with a length of 155,549 bp and consisted of 85,990 bp of large single copy, 18,373 bp of small single copy, and 25,593 bp of a pair of inverted repeat regions. A total of 158 genes were annotated, including 105 protein-coding genes, 45 tRNA genes, and eight rRNA genes. Maximum likelihood phylogenetic analysis with 25 Solanaceae species revealed that S. hougasii is most closely grouped with S. tuberosum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA