Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(35): e2403674, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38995107

RESUMO

Nickel boride catalysts show great potential as low-cost and efficient alternatives to noble-metal catalysts in acidic media; however, synthesizing and isolating a specific phase and composition of nickel boride is nontrivial, and issues persist in their long-term stability as electrocatalysts. Here, a single-crystal nickel boride, Ni23B6, is reported which exhibits high electrocatalytic activity for the hydrogen evolution reaction (HER) in an acidic solution, and that its poor long-term stability can be overcome via encapsulation by single-crystal trilayer hexagonal boron nitride (hBN) film. Interestingly, hBN-covered Ni23B6 on a Ni substrate shows an identical overpotential of 52 mV at a current density of 10 mA cm-2 to that of bare Ni23B6. This phenomenon indicates that the single-crystalline hBN layer is catalytically transparent and does not obstruct HER activation. The hBN/Ni23B6/Ni has remarkable long-term stability with negligible changes to its polarization curves for 2000 cycles, whereas the Ni23B6/Ni shows significant degradation after 650 cycles. Furthermore, chronoamperometric measurements indicate that stability is preserved for >20 h. Long-term stability tests also reveal that the surface morphology and chemical structure of the hBN/Ni23B6/Ni electrode remain preserved. This work provides a model for the practical design of robust and durable electrochemical catalysts through the use of hBN encapsulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA