Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801166

RESUMO

Root bark of Dictamnus dasycarpus Turcz. has been widely used as a traditional medicine and is a well-known anti-inflammatory agent. We isolated limonoid triterpene, obacunone (Obac) from the dried root bark of D. dasycarpus. Obac has been reported to exhibit varieties of biological activities including anti-inflammatory, anti-cancer, and anti-oxidant effects. This study aimed to investigate the beneficial effects and biological mechanisms of Obac in osteoblast differentiation and bone matrix mineralization. In the present study, Obac at concentrations ranging from 1 to 100 µM showed no proliferation effects in MC3T3-E1. The treatment of Obac (1 and 10 µM) increased wound healing and migration rates in a dose-dependent manner. Alkaline phosphatase (ALP) staining and activity showed that Obac (1 and 10 µM) enhanced early osteoblast differentiation in a dose-dependent manner. Obac also increased late osteoblast differentiation in a dose-dependent manner, as indicated by the mineralized nodule formation of ARS staining. The effects of Obac on osteoblast differentiation was validated by the levels of mRNAs encoding the bone differentiation markers, including Alp, bone sialoprotein (Bsp), osteopontin (Opn), and osteocalcin (Ocn). Obac increased the expression of bone morphogenetic protein (BMP), and the phosphorylation of smad1/5/8, and the expression of runt-related transcription factor 2 (RUNX2); Obac also inhibited GSK3ß and upregulated the protein level of ß-catenin in a dose-dependent manner during osteoblast differentiation. Obac-mediated osteoblast differentiation was attenuated by a BMP2 inhibitor, Noggin and a Wnt/ß-catenin inhibitor, Dickkopf-1 (Dkk1) with the abolishment of RUNX2 expression and nuclear accumulation by Obac. Taken together, the findings of this study demonstrate that Obac has pharmacological and biological activates to promote osteoblast differentiation and bone mineralization through BMP2, ß-catenin, and RUNX2 pathways, and suggest that Obac might be a therapeutic effect for the treatment and prevention of bone diseases such as osteoporosis and periodontitis.


Assuntos
Benzoxepinas/farmacologia , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Limoninas/farmacologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Camundongos , Osteoblastos/efeitos dos fármacos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
2.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199016

RESUMO

Paeonia suffruticosa is a magnificent and long-lived woody plant that has traditionally been used to treat various diseases including inflammatory, neurological, cancer, and cardiovascular diseases. In the present study, we demonstrated the biological mechanisms of paeonoside (PASI) isolated from the dried roots of P. suffruticosa in pre-osteoblasts. Herein, we found that PASI has no cytotoxic effects on pre-osteoblasts. Migration assay showed that PASI promoted wound healing and transmigration in osteoblast differentiation. PASI increased early osteoblast differentiation and mineralized nodule formation. In addition, PASI enhanced the expression of Wnt3a and bone morphogenetic protein 2 (BMP2) and activated their downstream molecules, Smad1/5/8 and ß-catenin, leading to increases in runt-related transcription factor 2 (RUNX2) expression during osteoblast differentiation. Furthermore, PASI-mediated osteoblast differentiation was attenuated by inhibiting the BMP2 and Wnt3a pathways, which was accompanied by reduction in the expression of RUNX2 in the nucleus. Taken together, our findings provide evidence that PASI enhances osteoblast differentiation and mineralized nodules by regulating RUNX2 expression through the BMP2 and Wnt3a pathways, suggesting a potential role for PASI targeting osteoblasts to treat bone diseases including osteoporosis and periodontitis.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Glicosídeos/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Extratos Vegetais/farmacologia , Biomarcadores , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glicosídeos/química , Humanos , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética/efeitos adversos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/química , Via de Sinalização Wnt
3.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066458

RESUMO

Paeonia suffruticosa has been extensively used as a traditional medicine with various beneficial effects; paeonolide (PALI) was isolated from its dried roots. This study aimed to investigate the novel effects and mechanisms of PALI in pre-osteoblasts. Here, cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP) and by staining it with Alizarin red S (ARS). Cell migration was assessed using wound healing and Boyden chamber assays. Western blot and immunofluorescence analyses were used to examine the intracellular signaling pathways and differentiation proteins. PALI (0.1, 1, 10, 30, and 100 µM) showed no cytotoxic or proliferative effects in pre-osteoblasts. In the absence of cytotoxicity, PALI (1, 10, and 30 µM) promoted wound healing and transmigration during osteoblast differentiation. ALP staining demonstrated that PALI (1, 10, and 30 µM) promoted early osteoblast differentiation in a dose-dependent manner, and ARS staining showed an enhanced mineralized nodule formation, a key indicator of late osteoblast differentiation. Additionally, low concentrations of PALI (1 and 10 µM) increased the bone morphogenetic protein (BMP)-Smad1/5/8 and Wnt-ß-catenin pathways in osteoblast differentiation. Particularly, PALI (1 and 10 µM) increased the phosphorylation of ERK1/2 compared with BMP2 treatment, an FDA-approved drug for bone diseases. Furthermore, PALI-mediated early and late osteoblast differentiation was abolished in the presence of the ERK1/2 inhibitor U0126. PALI-induced RUNX2 (Cbfa1) expression and nuclear localization were also attenuated by blocking the ERK1/2 pathway during osteoblast differentiation. We suggest that PALI has biologically novel activities, such as enhanced osteoblast differentiation and bone mineralization mainly through the intracellular ERK1/2-RUNX2 signaling pathway, suggesting that PALI might have therapeutic action and aid the treatment and prevention of bone diseases, such as osteoporosis and periodontitis.


Assuntos
Acetofenonas/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese , Animais , Proteína Morfogenética Óssea 2/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteína Wnt3/metabolismo
4.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915826

RESUMO

Six kuwanon derivatives (A/B/C/E/H/J) extracted from the roots of Morus alba L. were evaluated to determine their cyclooxygenase (COX)-1 and 2 inhibitory effects. Cyclooxygenase (COX) is known as the target enzyme of nonsteroidal anti-inflammatory drugs (NSAIDs), which are the most widely used therapeutic agents for pain and inflammation. Among six kuwanon derivatives, kuwanon A showed selective COX-2 inhibitory activity, almost equivalent to that of celecoxib, a known COX inhibitor. Kuwanon A showed high COX-2 inhibitory activity (IC50 = 14 µM) and a selectivity index (SI) range of >7.1, comparable to celecoxib (SI > 6.3). To understand the mechanisms underlying this effect, we performed docking simulations, fragment molecular orbital (FMO) calculations, and pair interaction energy decomposition analysis (PIEDA) at the quantum-mechanical level. As a result, kuwanon A had the strongest interaction with Arg120 and Tyr355 at the gate of the COX active site (-7.044 kcal/mol) and with Val89 in the membrane-binding domain (-6.599 kcal/mol). In addition, kuwanon A closely bound to Val89, His90, and Ser119, which are residues at the entrance and exit routes of the COX active site (4.329 Å). FMO calculations and PIEDA well supported the COX-2 selective inhibitory action of kuwanon A. It showed that the simulation and modeling results and experimental evidence were consistent.


Assuntos
Derivados de Benzeno/farmacologia , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Flavonoides/farmacologia , Morus/química , Derivados de Benzeno/isolamento & purificação , Flavonoides/isolamento & purificação , Simulação de Acoplamento Molecular , Extratos Vegetais/química
5.
Int J Mol Sci ; 21(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456334

RESUMO

BACKGROUND: (E)-methyl-cinnamate (EMC), a phytochemical constituent isolated from Alpinia katsumadai Hayata, is a natural flavor compound with anti-inflammatory properties, which is widely used in the food and commodity industry. However, the pharmacological effects of methyl-cinnamate on pre-osteoblasts remain unknown. This study aimed to investigate the pharmacological effects and mechanisms of EMC in pre-osteoblast MC3T3-E1 cells (pre-osteoblasts). METHODS: Cell viability and apoptosis were evaluated using the MTT assay and TUNEL staining. Cell migration and osteoblast differentiation were examined using migration assays, as well as alkaline phosphatase activity and staining assays. Western blot analysis was used to examine intracellular signaling pathways and apoptotic proteins. RESULTS: EMC decreased cell viability with morphological changes and increased apoptosis in pre-osteoblasts. EMC also induced the cleavage of Poly (ADP-ribose) polymerase (PARP) and caspase-3 and reduced the expression of anti-apoptotic proteins. In addition, EMC increased TUNEL-positive cells in pre-osteoblasts, decreased the activation of mitogen-activated protein kinases, and suppressed cell migration rate in pre-osteoblasts. Subsequently, EMC inhibited the osteoblast differentiation of pre-osteoblasts, as assessed by alkaline phosphatase staining and activity assays. CONCLUSION: These findings demonstrate that EMC has a pharmacological and biological role in cell survival, migration, and osteoblast differentiation. It suggests that EMC might be a potential phytomedicine for treating abnormalities of osteoblast function in bone diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cinamatos/farmacologia , Osteogênese/efeitos dos fármacos , Alpinia/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Camundongos , Osteoblastos , Osteogênese/fisiologia , Compostos Fitoquímicos/farmacologia , Transdução de Sinais
6.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339165

RESUMO

Styrax Japonica Sieb. et Zucc. has been used as traditional medicine in inflammatory diseases, and isolated compounds have shown pharmacological activities. Pinoresinol glucoside (PIN) belonging to lignins was isolated from the stem bark of S. Japonica. This study aimed to investigate the biological function and mechanisms of PIN on cell migration, osteoblast differentiation, and matrix mineralization. Herein, we investigated the effects of PIN in MC3T3-E1 pre-osteoblasts, which are widely used for studying osteoblast behavior in in vitro cell systems. At concentrations ranging from 0.1 to 100 µM, PIN had no cell toxicity in pre-osteoblasts. Pre-osteoblasts induced osteoblast differentiation, and the treatment of PIN (10 and 30 µM) promoted the cell migration rate in a dose-dependent manner. At concentrations of 10 and 30 µM, PIN elevated early osteoblast differentiation in a dose-dependent manner, as indicated by increases in alkaline phosphatase (ALP) staining and activity. Subsequently, PIN also increased the formation of mineralized nodules in a dose-dependent manner, as indicated by alizarin red S (ARS) staining, demonstrating positive effects of PIN on late osteoblast differentiation. In addition, PIN induced the mRNA level of BMP2, ALP, and osteocalcin (OCN). PIN also upregulated the protein level of BMP2 and increased canonical BMP2 signaling molecules, the phosphorylation of Smad1/5/8, and the protein level of Runt-related transcription factor 2 (RUNX2). Furthermore, PIN activated non-canonical BMP2 signaling molecules, activated MAP kinases, and increased ß-catenin signaling. The findings of this study indicate that PIN has biological roles in osteoblast differentiation and matrix mineralization, and suggest that PIN might have anabolic effects in bone diseases such as osteoporosis and periodontitis.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glicosídeos/farmacologia , Lignanas/farmacologia , Osteoblastos/efeitos dos fármacos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Styrax/química
7.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825675

RESUMO

In cancer cells, aerobic glycolysis rather than oxidative phosphorylation (OxPhos) is generally preferred for the production of ATP. In many cancers, highly expressed pyruvate dehydrogenase kinase 1 (PDK1) reduces the activity of pyruvate dehydrogenase (PDH) by inducing the phosphorylation of its E1α subunit (PDHA1) and subsequently, shifts the energy metabolism from OxPhos to aerobic glycolysis. Thus, PDK1 has been regarded as a target for anticancer treatment. Here, we report that ilimaquinone (IQ), a sesquiterpene quinone isolated from the marine sponge Smenospongia cerebriformis, might be a novel PDK1 inhibitor. IQ decreased the cell viability of human and murine cancer cells, such as A549, DLD-1, RKO, and LLC cells. The phosphorylation of PDHA1, the substrate of PDK1, was reduced by IQ in the A549 cells. IQ decreased the levels of secretory lactate and increased oxygen consumption. The anticancer effect of IQ was markedly reduced in PDHA1-knockout cells. Computational simulation and biochemical assay revealed that IQ interfered with the ATP binding pocket of PDK1 without affecting the interaction of PDK1 and the E2 subunit of the PDH complex. In addition, similar to other pyruvate dehydrogenase kinase inhibitors, IQ induced the generation of mitochondrial reactive oxygen species (ROS) and depolarized the mitochondrial membrane potential in the A549 cells. The apoptotic cell death induced by IQ treatment was rescued in the presence of MitoTEMPO, a mitochondrial ROS inhibitor. In conclusion, we suggest that IQ might be a novel candidate for anticancer therapeutics that act via the inhibition of PDK1 activity.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Quinonas/farmacologia , Sesquiterpenos/farmacologia , Células A549 , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/fisiologia , Carcinoma Pulmonar de Lewis , Linhagem Celular Tumoral , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Poríferos/química , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/química , Espécies Reativas de Oxigênio/metabolismo
8.
Molecules ; 25(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859055

RESUMO

Eight compounds were isolated from the roots of Glycyrrhiza uralensis and tested for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activities. The coumarin glycyrol (GC) effectively inhibited butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) with IC50 values of 7.22 and 14.77 µM, respectively, and also moderately inhibited MAO-B (29.48 µM). Six of the other seven compounds only weakly inhibited AChE and BChE, whereas liquiritin apioside moderately inhibited AChE (IC50 = 36.68 µM). Liquiritigenin (LG) potently inhibited MAO-B (IC50 = 0.098 µM) and MAO-A (IC50 = 0.27 µM), and liquiritin, a glycoside of LG, weakly inhibited MAO-B (>40 µM). GC was a reversible, noncompetitive inhibitor of BChE with a Ki value of 4.47 µM, and LG was a reversible competitive inhibitor of MAO-B with a Ki value of 0.024 µM. Docking simulations showed that the binding affinity of GC for BChE (-7.8 kcal/mol) was greater than its affinity for AChE (-7.1 kcal/mol), and suggested that GC interacted with BChE at Thr284 and Val288 by hydrogen bonds (distances: 2.42 and 1.92 Å, respectively) beyond the ligand binding site of BChE, but that GC did not form hydrogen bond with AChE. The binding affinity of LG for MAO-B (-8.8 kcal/mol) was greater than its affinity for MAO-A (-7.9 kcal/mol). These findings suggest GC and LG should be considered promising compounds for the treatment of Alzheimer's disease with multi-targeting activities.


Assuntos
Butirilcolinesterase/química , Inibidores da Colinesterase , Cumarínicos , Flavanonas , Glycyrrhiza uralensis/química , Inibidores da Monoaminoxidase , Monoaminoxidase/química , Animais , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Cumarínicos/química , Cumarínicos/isolamento & purificação , Electrophorus , Flavanonas/química , Flavanonas/isolamento & purificação , Humanos , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/isolamento & purificação
9.
Bioorg Med Chem Lett ; 29(6): 839-843, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30686752

RESUMO

Osthenol (6), a prenylated coumarin isolated from the dried roots of Angelica pubescens, potently and selectively inhibited recombinant human monoamine oxidase-A (hMAO-A) with an IC50 value of 0.74 µM and showed a high selectivity index (SI > 81.1) for hMAO-A versus hMAO-B. Compound 6 was a reversible competitive hMAO-A inhibitor (Ki = 0.26 µM) with a potency greater than toloxatone (IC50 = 0.93 µM), a marketed drug. Isopsoralen (3) and bakuchicin (1), furanocoumarin derivatives isolated from Psoralea corylifolia L., showed slightly higher IC50 values (0.88 and 1.78 µM, respectively) for hMAO-A than 6, but had low SI values (3.1 for both). Other coumarins tested did not effectively inhibit hMAO-A or hMAO-B. A structural comparison suggested that the 8-(3,3-dimethylallyl) group of 6 increased its inhibitory activity against hMAO-A compared with the 6-methoxy group of scopoletin (4). Molecular docking simulations revealed that the binding affinity of 6 for hMAO-A (-8.5 kcal/mol) was greater than that for hMAO-B (-5.6 kcal/mol) and that of 4 for hMAO-A (-7.3 kcal/mol). Docking simulations also implied that 6 interacted with hMAO-A at Phe208 and with hMAO-B at Ile199 by carbon hydrogen bondings. Our findings suggest that osthenol, derived from natural products, is a selective and potent reversible inhibitor of MAO-A, and can be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.


Assuntos
Cumarínicos/química , Inibidores da Monoaminoxidase/química , Monoaminoxidase/química , Acetilcolinesterase/química , Domínio Catalítico , Inibidores da Colinesterase/química , Cumarínicos/metabolismo , Ensaios Enzimáticos , Humanos , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
10.
Bioorg Chem ; 89: 103043, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31200287

RESUMO

Six hundred forty natural compounds were tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Of those, sargachromanol I (SCI) and G (SCG) isolated from the brown alga Sargassum siliquastrum, dihydroberberine (DB) isolated from Coptis chinensis, and macelignan (ML) isolated from Myristica fragrans, potently and effectively inhibited AChE with IC50 values of 0.79, 1.81, 1.18, and 4.16 µM, respectively. SCI, DB, and ML reversibly inhibited AChE and showed mixed, competitive, and noncompetitive inhibition, respectively, with Ki values of 0.63, 0.77, and 4.46 µM, respectively. Broussonin A most potently inhibited BChE (IC50 = 4.16 µM), followed by ML, SCG, and SCI (9.69, 10.79, and 13.69 µM, respectively). In dual-targeting experiments, ML effectively inhibited monoamine oxidase B with the greatest potency (IC50 = 7.42 µM). Molecular docking simulation suggested the binding affinity of SCI (-8.6 kcal/mol) with AChE was greater than those of SCG (-7.9 kcal/mol) and DB (-8.2 kcal/mol). Docking simulation indicated SCI interacts with AChE at Trp81, and that SCG interacts at Ser119. No hydrogen bond was predicted for the interaction between AChE and DB. This study suggests SCI, SCG, DB, and ML be viewed as new reversible AChE inhibitors and useful lead compounds for the development for the treatment of Alzheimer's disease.


Assuntos
Acetilcolinesterase/metabolismo , Benzopiranos/farmacologia , Produtos Biológicos/farmacologia , Inibidores da Colinesterase/farmacologia , Álcoois Graxos/farmacologia , Sargassum/química , Anemarrhena/química , Animais , Benzopiranos/química , Benzopiranos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Relação Dose-Resposta a Droga , Electrophorus , Álcoois Graxos/química , Álcoois Graxos/isolamento & purificação , Cavalos , Humanos , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoaminoxidase/metabolismo , Myristica/química , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974833

RESUMO

Ring finger protein 146 (RNF146) is an E3 ubiquitin ligase whose activity prevents poly (ADP-ribose) polymerase 1 (PARP1)-dependent neurodegeneration in Parkinson's disease (PD). Previously, we reported that rhododendrin is a chemical inducer that increases RNF146 expression. However, the molecular mechanism of rhododendrin-induced RNF146 expression is largely unknown and its translational application for the treatment of Parkinson's disease remains unexplored. Here we found that rhododendrin increased RNF146 expression via estrogen receptor ß (ERß) activation. Rhododendrin stimulated ERß nuclear translocation and binding to the RNF146 promoter, thereby enhancing its transcription. Rhododendrin is cytoprotective against 6-hydroxydopamine (6-OHDA)-induced cell death, which is largely dependent on ERß activity and RNF146 expression. Finally, we demonstrated that rhododendrin treatment resulted in RNF146 expression in dopaminergic neurons in mice. Moreover, dopaminergic neuron viability was markedly enhanced by pretreatment with rhododendrin in 6-OHDA-induced mouse models for PD. Our findings indicate that estrogen receptor activation plays a neuroprotective role and that rhododendrin could be a potential therapeutic agent in preventing PARP1-dependent dopaminergic cell loss in PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Receptor beta de Estrogênio/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicosídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina/efeitos adversos , Fenóis/farmacologia , Ubiquitina-Proteína Ligases/biossíntese , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/patologia , Receptor beta de Estrogênio/genética , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Estresse Oxidativo/genética , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ubiquitina-Proteína Ligases/genética
12.
Bioorg Med Chem Lett ; 28(4): 584-588, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29395970

RESUMO

Hispidol, an aurone, isolated from Glycine max Merrill, was found to potently and selectively inhibit an isoform of recombinant human monoamine oxidase-A (MAO-A), with an IC50 value of 0.26 µM, and to inhibit MAO-B, but with lower potency (IC50 = 2.45 µM). Hispidol reversibly and competitively inhibited MAO-A with a Ki value of 0.10 µM with a potency much greater than toloxatone (IC50 = 1.10 µM), a marketed drug. It also reversibly and competitively inhibited MAO-B (Ki = 0.51 µM). Sulfuretin, an analog of hispidol, effectively inhibited MAO-A (IC50 = 4.16 µM) but not MAO-B (IC50 > 80 µM). A comparison of their chemical structures showed that the 3'-hydroxyl group of sulfuretin might reduce its inhibitory activities against MAO-A and MAO-B. Flexible docking simulation revealed that the binding affinity of hispidol for MAO-A (-9.1 kcal/mol) was greater than its affinity for MAO-B (-8.7 kcal/mol). The docking simulation showed hispidol binds to the major pocket of MAO-A or MAO-B. The findings suggest hispidol is a potent, selective, reversible inhibitor of MAO-A, and that it be considered a novel lead compound for development of novel reversible inhibitors of MAO-A.


Assuntos
Benzofuranos/química , Inibidores da Monoaminoxidase/química , Sítios de Ligação , Clorgilina/química , Flavonoides/química , Humanos , Concentração Inibidora 50 , Cinética , Simulação de Acoplamento Molecular , Monoaminoxidase/química , Oxazolidinonas/química , Ácidos Picolínicos/química
13.
Bioorg Med Chem Lett ; 28(14): 2403-2407, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925480

RESUMO

Chelerythrine, an isoquinoline alkaloid isolated from the herbaceous perennial Chelidonium majus, was found to potently and selectively inhibit an isoform of recombinant human monoamine oxidase-A (MAO-A) with an IC50 value of 0.55 µM. Chelerythrine was a reversible competitive MAO-A inhibitor (Ki = 0.22 µM) with a potency much greater than toloxatone (IC50 = 1.10 µM), a marketed drug. Other isoquinoline alkaloids tested did not effectively inhibit MAO-A or MAO-B. A structural comparison with corynoline suggested the 1- and/or 2-methoxy groups of chelerythrine increase its inhibitory activity against MAO-A. Molecular docking simulations revealed that the binding affinity of chelerythrine for MAO-A (-9.7 kcal/mol) was greater than that for MAO-B (-4.6 kcal/mol). Docking simulation implied that Cys323 and Tyr444 of MAO-A are key residues for hydrogen-bond interaction with chelerythrine. Our findings suggest chelerythrine is one of the most reversible selective and potent natural inhibitor of MAO-A, and that it be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.


Assuntos
Benzofenantridinas/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Benzofenantridinas/síntese química , Benzofenantridinas/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade
14.
Pulm Pharmacol Ther ; 46: 41-47, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28782713

RESUMO

This study explores the antitubercular activity of α-viniferin, a bioactive phytochemical compound obtained from Carex humilis. α-Viniferin was active against both drug-susceptible and -resistant strains of Mycobacterium tuberculosis at MIC50s of 4.6 µM in culture broth medium and MIC50s of 2.3-4.6 µM inside macrophages and pneumocytes. In combination with streptomycin and ethambutol, α-viniferin exhibited an additive effect and partial synergy, respectively, against M. tuberculosis H37Rv. α-Viniferin also did not show cytotoxicity in any of the cell lines tested up to a concentration of 147 µM, which gives this compound a selectivity index of >32. Moreover, α-viniferin was active against 3 Staphylococcus species, including methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), and methicillin-resistant Staphylococcus epidermidis (MRSE).


Assuntos
Antituberculosos/farmacologia , Benzofuranos/farmacologia , Carex (Planta)/química , Mycobacterium tuberculosis/efeitos dos fármacos , Células A549 , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Antibacterianos/administração & dosagem , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antituberculosos/administração & dosagem , Antituberculosos/isolamento & purificação , Benzofuranos/administração & dosagem , Benzofuranos/isolamento & purificação , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Etambutol/administração & dosagem , Etambutol/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Raízes de Plantas , Células RAW 264.7 , Estreptomicina/administração & dosagem , Estreptomicina/farmacologia
15.
Phytother Res ; 31(10): 1600-1606, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28816372

RESUMO

Responsible for nearly 1.5 million deaths every year, the infectious disease tuberculosis remains one of the most serious challenges to global health. The emergence of multidrug-resistant tuberculosis and, more recently, extensively drug-resistant tuberculosis poses a significant threat in our effort to control this epidemic. New drugs are urgently needed to combat the growing threat of antimicrobial resistance. To achieve this goal, we screened approximately 500 species of medicinal plant methanol extracts and their solvent partitioned fractions for potential inhibitors of Mycobacterium tuberculosis growth. Using microdilution screening, the ethyl acetate solvent partitioned fraction from the heartwood of Caesalpinia sappan exhibited strong antitubercular activity. We isolated the active compound and identified it as 3-deoxysappanchalcone. The extracted 3-deoxysappanchalcone possessed activity against both drug-susceptible and drug-resistant strains of M. tuberculosis at MIC50 s of 3.125-12.5 µg/mL in culture broth and MIC50 s of 6.25-12.5 µg/mL inside macrophages and pneumocytes. 3-Deoxysappanchalcone was also found to act in partial synergy with streptomycin/ethambutol against M. tuberculosis H37Rv. 3-Deoxysappanchalcone had no cytotoxicity against the A549 cell line up to a concentration of 100 µg/mL (selectivity index > 8-32). Further studies are warranted to establish the in vivo effect and therapeutic potential of 3-deoxysappanchalcone. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Antituberculosos/farmacologia , Caesalpinia/química , Chalconas/farmacologia , Extratos Vegetais/farmacologia , Células A549 , Animais , Humanos , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Plantas Medicinais/química , Células RAW 264.7 , Madeira/química
16.
Regul Toxicol Pharmacol ; 77: 93-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26925497

RESUMO

The biological fermentation of plants is usually used to improve their product properties, including their biological activity. Acanthopanax koreanum is a plant indigenous to Jeju, Korea; however, fermented A. koreanum (FAK) has not been guaranteed to be safe. Therefore, in this study, a safety evaluation of aqueous extracts of FAK was performed using Sprague Dawley rats. The acute toxicity of FAK did not influence animal mortality, body weight changes or the animals' clinical appearance at a concentration of 5000 mg/kg body weight. Using doses of 500, 1000 and 2000 mg/kg/day in a subchronic (13-week) toxicity study, the administration of FAK in male rats increased their body weight, food consumption, absolute liver weight, liver-associated enzymes and total cholesterol content. However, these effects of FAK were not considered toxic because the changes were not accompanied by any evidence of clinical signs or any change in the histopathological examination. On the other hand, the FAK-treated female rats did not exhibit significant changes in their body weight, food consumption, absolute and relative organ weights or liver enzymes. These results suggest that the acute oral administration of FAK is non-toxic to rats, and 13 weeks of repeated dosing demonstrated no FAK-related toxicity at a concentration of 2000 mg/kg. Therefore, the no-observed-adverse-effect level (NOAEL) of FAK was determined to be 2000 mg/kg/day for both male and female rats.


Assuntos
Eleutherococcus/toxicidade , Fermentação , Extratos Vegetais/toxicidade , Testes de Toxicidade Aguda/métodos , Testes de Toxicidade Crônica/métodos , Animais , Biomarcadores/sangue , Biomarcadores/urina , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Eleutherococcus/química , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Plantas Medicinais , Ratos Sprague-Dawley , Medição de Risco , Fatores Sexuais , Fatores de Tempo , Aumento de Peso/efeitos dos fármacos
17.
Food Chem ; 127(3): 999-1006, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25214089

RESUMO

The ethanol extract and its solvent subfractions, partitioned by n-hexane (HX), chloroform (CF) and ethylacetate (EA), from Enteromorpha prolifera were measured for antioxidant activities, and a structural identification of the active compound was performed using spectroscopic techniques. The CF fraction showed the most potent 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging activities with strong reducing ability. The DPPH and hydroxyl radical scavenging capacities of the CF fraction were comparable to the capacities of the positive controls, BHA and α-tocopherol, at concentrations ranging from 0.25 to 1.0mg/mL. However, little correlation (r(2)=0.03-0.48) was observed between antioxidant activities and total phenolic contents of the extracts. Further fractionation and spectroscopic analysis of the CF fraction suggested that the strong antioxidant activity of the extracts from E. prolifera was because of a chlorophyll compound, pheophorbide a, rather than phenolic compounds.

18.
Carbohydr Polym ; 254: 117250, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357846

RESUMO

In this study, the sulfated polysaccharide (SP) of Codium fragile was conjugated to folic acid (SP-FA). FT-IR and 1H NMR techniques revealed the occurrence of esterification reaction between the hydroxyl group of SP and the γ-carboxyl group of FA that confirming the SP-FA conjugation. SP and SP-FA did not show any direct toxicity on NK cells and HeLa cells. However, the treatment of SP and SP-FA enhance the NK cells cytotoxicity against HeLa cells by the upregulation of IFN-γ, TNF-α, perforin, and Granzyme-B. Moreover, NK cells activation was stimulated through NF-кB and MAPK pathways. The binding capacity studies exposed the targeting ability of HeLa cells by folate receptor (FR) which was assessed by a confocal quantitative image cytometer analysis. These results indicate that SP-FA could be used as selective drug delivery systems for targeting FR-overexpressed cancer cells with less toxicity.


Assuntos
Ácido Fólico/química , Polissacarídeos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Transportadores de Ácido Fólico/metabolismo , Células HeLa , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Polissacarídeos/farmacocinética , Polissacarídeos/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Ésteres do Ácido Sulfúrico/química
19.
Am J Chin Med ; 49(4): 883-900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829967

RESUMO

Sanguisorba officinalis L. (Rosaceae) is a perennial herbaceous plant and its roots have been used as an important traditional medicine for over 2000 years. Ziyuglycoside I (Ziyu), an active compound isolated from the roots of S. officinalis L., has shown biological effects such as anti-oxidant, antiviral, and antiwrinkle activities. This study aimed to elucidate the underlying mechanisms of action of Ziyu on cytotoxicity, migration, and differentiation of pre-osteoblasts. Herein, at concentrations ranging from 1 to 100 [Formula: see text]M, Ziyu was not cytotoxic against pre-osteoblasts. Alkaline phosphatase activity assay and staining, and migration assay showed that Ziyu increased cell migration and promoted early osteoblast differentiation, followed by the enhancement of mineralized nodule formation in a dose-dependent manner, as indicated by Alizarin Red S staining. In addition, Ziyu increased the protein levels of runt-related transcription factor 2 (RUNX2) during osteoblast differentiation, whereas it did not affect the phosphorylation of Smad1/5/8 and GSK3b and expression of [Formula: see text]-catenin. Ziyu also activated ERK1/2 and mitogen-activated protein kinase during osteoblast differentiation, and ERK1/2 inhibitor attenuated Ziyu-mediated RUNX2 expression and nuclear accumulation. Furthermore, Ziyu-mediated early and late osteoblast differentiation was significantly suppressed by the inhibition of ERK1/2, which was accompanied by attenuation in the mRNA levels of osteoblast-related genes including bone sialoprotein, osteopontin, and osteocalcin. Taken together, the findings of this study provide evidence that Ziyu promotes cell migration, osteoblast differentiation, and bone mineralization and suggest a potential role for Ziyu in the treatment of bone diseases.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Saponinas/farmacologia , Linhagem Celular , Humanos , Estrutura Molecular , Raízes de Plantas , República da Coreia , Saponinas/química , Regulação para Cima
20.
Am J Chin Med ; 49(8): 2017-2031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34961419

RESUMO

Osteosarcoma is the most common malignant bone-forming tumor, wherein most patients with high grade osteosarcomas are treated with chemotherapy. Despite this, survival for metastatic or relapsed osteosarcoma patients has remained at an overall 5-year survival rate of 20%. In particular, the extracts of Corylopsis coreana (Korean winter hazel), a cultivated woody plant in South Korea, have shown beneficial anti-inflammatory, anti-oxidative, anti-osteoclastic, and antihyperuricemic properties. Therefore, this study aimed to demonstrate the antitumor activities and underlying mechanism of 11-O-Galloyl bergenin (OGAL) isolated from Corylopsis coreanas leaves in human osteosarcoma cells. Herein, we found that OGAL inhibited MG63 cell proliferation and induced cellular apoptosis as evidenced by cleaved-PARP, cleaved-caspase 3, TUNEL-positive cells, and Annexin V-positive cells. Specifically, OGAL-induced apoptosis was accompanied by p53 and p21 upregulation, BAX expression, and decreased Bcl-2 and cdk2. Moreover, OGAL induced autophagy via AKT inactivation, LC3II upregulation, and MG63 cell autophagosome formation. OGAL-induced autophagy was also accompanied by increased p38 phosphorylation, whereas JNK and ERK1/2 activities were found to be unaffected upon examining the MAPK signaling pathway. Furthermore, wound healing and Boyden chamber assays showed that OGAL suppressed MG63 cell migration and invasion. Given these findings, this study provided evidence that OGAL has antitumor effects by apoptosis and autophagy enhancement through increased p53, AKT, and p38 signaling, suggesting that OGAL may be a potential therapeutic strategy for osteosarcoma treatment.


Assuntos
Recidiva Local de Neoplasia , Osteossarcoma , Apoptose , Autofagia , Benzopiranos , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Osteossarcoma/tratamento farmacológico , Folhas de Planta , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA