Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Sports Sci ; 42(2): 169-178, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38423997

RESUMO

Force attenuation during landing requires coordinated motion of the ankle, knee, hip, and trunk, and strategies may differ between sexes. Sagittal plane coordination of the ankle/knee, knee/hip, and knee/trunk, and lower extremity and trunk kinematics and kinetics was compared throughout landing between 28 males and 28 females. Coordination was assessed with a modified vector coding technique and binning analysis. Total support moments (TSM), each joint's percent contribution, and timing of the TSM were compared. Females landed with less isolated knee flexion in the ankle/knee, knee/hip, and knee/trunk couplings, but more simultaneous ankle/knee flexion, less simultaneous knee flexion/hip extension, and more simultaneous trunk/knee flexion. Females landed with larger plantarflexion angles from 0-16% and smaller trunk flexion angles from 0-78%. In females, absolute TSM were larger from 0-6% and smaller from 42-100%, and normalized TSM were larger from 0-8% and 26-42%. Females had greater ankle contribution to the TSM from 14-15% and 29-35%, smaller absolute peak TSM, and the peak TSM occurred earlier. Females compensated for less isolated knee flexion with greater simultaneous ankle/knee flexion early in landing and knee/trunk flexion later in landing. Coordination and TSM differences may influence force attenuation strategies and have implications for knee injury disparity between sexes.


Assuntos
Lesões do Ligamento Cruzado Anterior , Traumatismos do Joelho , Masculino , Humanos , Feminino , Extremidade Inferior , Articulação do Joelho , Joelho , Fenômenos Biomecânicos , Movimento
2.
J Strength Cond Res ; 35(5): 1364-1371, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30335723

RESUMO

ABSTRACT: Choe, KH, Coburn, JW, Costa, PB, and Pamukoff, DN. Hip and knee kinetics during a back-squat and deadlift. J Strength Cond Res 35(5): 1364-1371, 2021-The back-squat and deadlift are performed to improve hip and knee extensor function. The purpose of this study was to compare lower extremity joint kinetics (peak net joint moments [NJMs] and positive joint work [PJW]) between the back-squat and deadlift. Twenty-eight resistance-trained subjects (17 men: 23.7 ± 4.3 years, 1.76 ± 0.09 m, 78.11 ± 10.91 kg; 11 women: 23.0 ± 1.9 years, 1.66 ± 0.06 m, 65.36 ± 7.84 kg) were recruited. One repetition maximum (1RM) testing and biomechanical analyses occurred on separate days. Three-dimensional biomechanics of the back-squat and deadlift were recorded at 70 and 85% 1RM for each exercise. The deadlift demonstrated larger hip extensor NJM than the back-squat {3.59 (95% confidence interval [CI]: 3.30-3.88) vs. 2.98 (95% CI: 2.72-3.23) Nm·kg-1, d = 0.81, p < 0.001}. However, the back-squat had a larger knee extensor NJM compared with the deadlift (2.14 [95% CI: 1.88-2.40] vs. 1.18 [95% CI: 0.99-1.37] Nm·kg-1, d = 1.44 p < 0.001). More knee PJW was performed during the back-squat compared with the deadlift (1.85 [95% CI: 1.60-2.09] vs. 0.46 [95% CI: 0.35-0.58] J·kg-1, d = 2.10, p < 0.001). However, there was more hip PJW during the deadlift compared with the back-squat (3.22 [95% CI: 2.97-3.47] vs. 2.37 [95% CI: 2.21-2.54] J·kg-1, d = 1.30, p < 0.001). Larger hip extensor NJM and PJW during the deadlift suggest that individuals targeting their hip extensors may yield greater benefit from the deadlift compared with the back-squat. However, larger knee extensor NJM and PJW during the back-squat suggest that individuals targeting their knee extensor muscles may benefit from incorporating the back-squat compared with the deadlift.


Assuntos
Joelho , Levantamento de Peso , Fenômenos Biomecânicos , Feminino , Humanos , Cinética , Articulação do Joelho , Masculino , Postura
3.
Arch Phys Med Rehabil ; 99(5): 973-980, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29407520

RESUMO

OBJECTIVE: To examine the effect of whole-body vibration (WBV) on running biomechanics in individuals with anterior cruciate ligament reconstruction (ACLR). DESIGN: Single-blind randomized crossover trial. SETTING: Research laboratory. PARTICIPANTS: Individuals (N=20) with unilateral ACLR (age [± SD]=22.3 [±3.3] years; mass=71.8 [±15.3] kg; time since ACLR=44.9 [±22.8] months; 15 females, 10 patellar tendon autograft, 7 hamstrings autograft, 3 allograft; International Knee Documentation Committee Score=83.5 [±9.3]). MAIN OUTCOME MEASURE: Participants performed isometric squats while being exposed to WBV or no vibration (control). WBV and control conditions were delivered in a randomized order during separate visits separated by 1-week washout periods. Running biomechanics of the injured and uninjured limbs were evaluated before and immediately after each intervention. Dependent variables included peak vertical ground reaction force (GRF) and loading rate (LR), peak knee flexion angle and external moment, and knee flexion excursion during the stance phase of running. RESULTS: There was an increase in knee flexion excursion (+4.1°, 95% confidence interval [CI]: 0.65, 7.5°) and a trend toward a reduction in instantaneous LR after WBV in the injured limb (-4.03 BW/sec-1, 95% CI -0.38, -7.69). No effect was observed on peak GRF, peak knee flexion angle, or peak external knee flexion moment, and no effect was observed in the uninjured limb. CONCLUSIONS: Our findings indicate that a single session of WBV acutely increases knee flexion excursion. WBV could be useful to improve running characteristics in individuals with knee pathology.


Assuntos
Lesões do Ligamento Cruzado Anterior/fisiopatologia , Reconstrução do Ligamento Cruzado Anterior/reabilitação , Corrida/fisiologia , Vibração/uso terapêutico , Adulto , Lesões do Ligamento Cruzado Anterior/reabilitação , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Estudos Cross-Over , Feminino , Humanos , Joelho/fisiopatologia , Masculino , Período Pós-Operatório , Amplitude de Movimento Articular , Método Simples-Cego , Resultado do Tratamento , Suporte de Carga/fisiologia , Adulto Jovem
4.
J Biomech ; 156: 111689, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37364395

RESUMO

Frontal and sagittal plane landing biomechanics differ between sexes but reported values don't account for simultaneous segment or joint motion necessary for a coordinated landing. Frontal and sagittal plane coordination patterns, angles, and moments were compared between 28 males and 28 females throughout the landing phase of a drop vertical jump. Females landed with less isolated thigh abduction (p = 0.018), more in-phase motion (p < 0.001), and more isolated shank adduction (p = 0.028) between the thigh and shank in the frontal plane compared with males. Females landed with less in-phase (p = 0.012) and more anti-phase motion (p = 0.019) between the thigh and shank in the sagittal plane compared with males. Females landed with less isolated knee flexion (p = 0.001) and more anti-phase motion (p < 0.001) between the sagittal and frontal plane knee coupling compared with males. Waveform and discrete metric analyses revealed females land with less thigh abduction from 20 % to 100 % and more shank abduction from 0 to 100 % of landing, smaller knee adduction at initial contact (p = 0.002), greater peak knee abduction angles (p = 0.015), smaller knee flexion angles at initial contact (p = 0.035) and peak (p = 0.034), greater peak knee abduction moments (p = 0.024), greater knee abduction angles from 0 to 13 % and 19 to 30 %, greater knee abduction moments from 19 to 25 %, and smaller knee flexion moments from 3 to 5 % of landing compared with males. Females utilize greater frontal plane motion compared with males, which may be due to different inter-segmental joint coordination and smaller sagittal plane angles. Larger knee abduction angles and greater knee adduction motion in females are due to aberrant shank abduction rather than thigh adduction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Articulação do Joelho , Masculino , Feminino , Humanos , Joelho , Extremidade Inferior , Perna (Membro) , Movimento , Fenômenos Biomecânicos
5.
J Orthop Sports Phys Ther ; 48(12): 960-967, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30032698

RESUMO

BACKGROUND: Following anterior cruciate ligament reconstruction (ACLR), individuals have quadriceps muscle impairments that influence gait mechanics and may contribute to an elevated risk of knee osteoarthritis. OBJECTIVES: To compare running mechanics and quadriceps function between individuals who have undergone ACLR and those in a control group, and to evaluate the association between quadriceps function and running mechanics. METHODS: In this controlled, cross-sectional laboratory study, 38 individuals who previously underwent primary unilateral ACLR (mean ± SD time since reconstruction, 48.0 ± 25.0 months) were matched to 38 control participants based on age, sex, and body mass index, and underwent assessments of quadriceps muscle performance and running biomechanics. Quadriceps muscle performance was assessed via isokinetic and isometric knee extension peak torque and rate of torque development (RTD) over 2 time frames: 0 to 100 milliseconds (RTD100) and 0 to 200 milliseconds (RTD200). Running evaluation included assessment of the knee flexion angle (KFA), knee extension moment (KEM), rate of knee extension moment (RKEM), vertical instantaneous loading rate, and vertical impact peak. RESULTS: On average, there was a smaller KFA (P = .016) in the involved limb compared to the uninvolved limb in the ACLR group. Compared to limbs in the control group, involved limbs in the ACLR group had lower RTD100 (P = .015), lower peak torque at 60°/s (P = .007), lower peak torque at 180°/s (P = .016), smaller KFA (P<.001), lower KEM (P = .001), lower RKEM (P = .004), and higher vertical instantaneous loading rate (P = .016). Compared to limbs in the control group, uninvolved limbs in the ACLR group had lower RTD100 (P = .003), lower peak torque at 60°/s (P = .017), and smaller KFA (P = .01). For the involved limbs in the ACLR group, there was a low correlation between isokinetic peak torque at 180°/s and RKEM (r = 0.38, P = .01), and a negligible correlation between RTD100 and RKEM (r = 0.26, P<.05). No differences were found in isometric strength for any comparison. CONCLUSION: Individuals who have undergone ACLR have bilateral alterations in running mechanics that are weakly associated with diminished quadriceps muscle performance. J Orthop Sports Phys Ther 2018;48(12):960-967. Epub 22 Jul 2018. doi:10.2519/jospt.2018.8170.


Assuntos
Lesões do Ligamento Cruzado Anterior/fisiopatologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior , Músculo Quadríceps/fisiologia , Corrida/fisiologia , Fenômenos Biomecânicos , Índice de Massa Corporal , Estudos Transversais , Feminino , Humanos , Contração Isométrica , Joelho/fisiologia , Masculino , Torque , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA