Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Hum Evol ; 130: 141-150, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31010540

RESUMO

The Sahara Desert episodically became a space available for hominins in the Pleistocene. Mostly, desert conditions prevailed during the interpluvial periods, which were only periodically interrupted by enhanced precipitation during pluvial or interglacial periods. Responding to Quaternary climatic changes, hominin dispersal was channeled through vegetated corridors. This manuscript introduces a recently discovered group of Acheulean and Middle Stone Age sites far from the Nile Valley in the Eastern Desert (Sudan), referred to as Eastern Desert Atbara River (EDAR). The ∼5 m stratigraphy of the area is divided into three units (Units I-III) bounded by erosion surfaces. Each contains archaeological horizons. The EDAR area has rich surface sites with Acheulean horizons under the surface, singular finds of hand-axes within stratigraphic context in exposures, and large Acheulean sites partly exposed and destroyed by the gold mining activity. Optically stimulated luminescence (OSL) dating of Acheulean and MSA horizons from the EDAR 135 site indicates that the sedimentary deposits with stone artifacts were formed during the Middle Pleistocene between Marine Isotope Stages (MIS) 7 (pluvial) and 6 (interpluvial). Based on the OSL dating from the top of Unit IB, Acheulean artifact-bearing sedimentary deposits from overlying Unit IIA are younger than ca. 231 ka. Unit IA is the oldest Acheulean horizon in the EDAR area, not yet dated but definitively older than ca. 231 ka. An MSA horizon found in fluvial sediment was dated to be between 156 and 181 ka by OSL. The EDAR Pleistocene archaeological sites provide evidence for the presence of additional corridor(s) across Nubia, which connects the early hominin dispersals from the Nile and Atbara River systems to the Red Sea coast.


Assuntos
Evolução Biológica , Meio Ambiente , Hominidae , Migração Humana , Animais , Arqueologia , Humanos , Sudão
2.
J Hazard Mater ; 393: 122373, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32126425

RESUMO

This study investigated mercury contamination with respect to the sediment characteristics in Gumu Creek near the Pohang Industrial Complex, South Korea. The contaminated sediment had high levels of Hg, exceeding 250 mg Hg/kg sediment at the sampling position, and high concentrations of iron, sulfur, and organic carbon under extreme anaerobic conditions. The anoxic condition of the sediment produced large amounts of FeS. Hg L3-edge EXAFS analysis revealed that FeS controlled the Hg species in the sediment mainly as ß-HgS like precipitation or Hg-S complexation. We also speculated that the presence of FeS induced the abiotic reduction of Hg(II) to Hg(0) and consequently suppressed the formation of highly toxic methylated mercury species. The results obtained in this study are mostly consistent with those reported in previous studies of geochemical reactions of FeS in controlling Hg(II) under pure FeS mineral systems under laboratory scenarios. This study demonstrates that the laboratory controlled reaction scenarios can explain the field behavior of Hg in the contaminated anoxic sediment of the Gumu Creek site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA