RESUMO
The development of hydrogen (H2) gas sensors is essential for the safe and efficient adoption of H2 gas as a clean, renewable energy source in the challenges against climate change, given its flammability and associated safety risks. Among various H2 sensors, gasochromic sensors have attracted great interest due to their highly intuitive and low power operation, but slow kinetics, especially slow recovery rate limited its further practical application. This study introduces Pd-decorated amorphous WO3 nanorods (Pd-WO3 NRs) as an innovative gasochromic H2 sensor, demonstrating rapid and highly reversible color changes for H2 detection. In specific, the amorphous nanostructure exhibits notable porosity, enabling rapid detection and recovery by facilitating effective H2 gas interaction and efficient diffusion of hydrogen ions (H+) dissociated from the Pd nanoparticles (Pd NPs). The optimized Pd-WO3 NRs sensor achieves an impressive response time of 14 s and a recovery time of 1 s to 5% H2. The impressively fast recovery time of 1 s is observed under a wide range of H2 concentrations (0.2-5%), making this study a fundamental solution to the challenged slow recovery of gasochromic H2 sensors.
RESUMO
To develop strategies for efficient photo-electrochemical water-splitting, it is important to understand the fundamental properties of oxide photoelectrodes by synthesizing and investigating their single-crystal thin films. However, it is challenging to synthesize high-quality single-crystal thin films from copper-based oxide photoelectrodes due to the occurrence of significant defects such as copper or oxygen vacancies and grains. Here, the CuBi2 O4 (CBO) single-crystal thin film photocathode is achieved using a NiO template layer grown on single-crystal SrTiO3 (STO) (001) substrate via pulsed laser deposition. The NiO template layer plays a role as a buffer layer of large lattice mismatch between CBO and STO (001) substrate through domain-matching epitaxy, and forms a type-II band alignment with CBO, which prohibits the transfer of photogenerated electrons toward bottom electrode. The photocurrent densities of the CBO single-crystal thin film photocathode demonstrate -0.4 and -0.7 mA cm-2 at even 0 VRHE with no severe dark current under illumination in a 0.1 m potassium phosphate buffer solution without and with H2 O2 as an electron scavenger, respectively. The successful synthesis of high-quality CBO single-crystal thin film would be a cornerstone for the in-depth understanding of the fundamental properties of CBO toward efficient photo-electrochemical water-splitting.
RESUMO
The development of high performance gas sensors that operate at room temperature has attracted considerable attention. Unfortunately, the conventional mechanism of chemiresistive sensors is restricted at room temperature by insufficient reaction energy with target molecules. Herein, novel strategy for room temperature gas sensors is reported using an ionic-activated sensing mechanism. The investigation reveals that a hydroxide layer is developed by the applied voltages on the SnO2 surface in the presence of humidity, leading to increased electrical conductivity. Surprisingly, the experimental results indicate ideal sensing behavior at room temperature for NO2 detection with sub-parts-per-trillion (132.3 ppt) detection and fast recovery (25.7 s) to 5 ppm NO2 under humid conditions. The ionic-activated sensing mechanism is proposed as a cascade process involving the formation of ionic conduction, reaction with a target gas, and demonstrates the novelty of the approach. It is believed that the results presented will open new pathways as a promising method for room temperature gas sensors.
RESUMO
An inorganic lead halide perovskite film, CsPbI3, used as an absorber in perovskite solar cells (PSCs) was optimized by controlling the annealing temperature and the layer thickness. The CsPbI3 layer was synthesized by one-step coating of CsI mixed with PbI2 and a HI additive in N,N-dimethylformamide. The annealing temperature of the CsPbI3 film was varied from 80 to 120 °C for different durations and the thickness was controlled by changing the spin-coating rpm. After annealing the CsPbI3 layer at 100 °C under dark conditions for 10 min, a black phase of CsPbI3 was formed and the band gap was 1.69 eV. Most of the yellow spots disappeared, the surface coverage was almost 100%, and the rms roughness was minimized to 3.03 nm after annealing at 100 °C. The power conversion efficiency (PCE) of the CsPbI3 based PSC annealed at 100 °C was 4.88%. This high PCE value is attributed to the low yellow phase ratio, high surface coverage, low rms roughness, lower charge transport resistance, and lower charge accumulation. The loss ratio of the PCE of the CH3NH3PbIxCl3-x and CsPbI3 based PSCs after keeping in air was 47 and 26%, respectively, indicating that the stability of the CsPbI3 based PSC is better than that of the CH3NH3PbIxCl3-x based PSC. From these results, it is evident that CsPbI3 is a potential candidate for solar cell applications.
RESUMO
The viability of A549 cells, a human lung carcinoma epithelial cell line, was evaluated after exposure to graphene oxide (GO) and its derivatives (dodecylamine GO (DA-GO), reduced GO (rGO), and sodium dodecyl sulfate rGO (SDS-rGO)). A decrease in the relative amounts of C-OH bonds and an increase in the number of C-C and C-N bonds in the C 1s spectra indicated that the reduction of GO to rGO and the surface functionalization of GO has taken place. The appearance of amine stretching bands, out-of-plane C-H stretching vibrations, and S = O stretching bands in the infrared spectra indicated the formation of DA-GO, rGO, and SDS-rGO, respectively. Low concentrations (3-25 µg/mL) of GO, rGO, and SDS-rGO were found to be mildly toxic, whereas DA-GO exhibited severe dose-dependent toxicity over the same concentration range. High concen- trations (50-400 µg/mL) of GO and all its derivatives resulted in severe toxicity to the A549 cells. It is believed that surface functionality strongly affects the viability of A549 cells.
Assuntos
Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Grafite/efeitos adversos , Grafite/química , Pulmão/patologia , Óxidos/química , Aminas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Oxirredução , Dodecilsulfato de Sódio/química , Propriedades de SuperfícieRESUMO
UV/ozone treated (UVO-treated) TaS2 and non-treated TaS2 nanosheets are introduced into organic photovoltaic cells (OPVs) as hole extraction layers (HEL) and electron extraction layers (EEL). TaS2 nanosheets are obtained via ultrasonic vibration and size-controlled by centrifugation. Atomic force microscopy (AFM) images reveal that the thickness and lateral size of TaS2 nanosheets are approximately 1 and 70 nm, indicating that uniform and ultrathin TaS2 nanosheets are obtained. The work function of TaS2 increases from 4.4 eV to 4.9-5.1 eV after applying UVO treatment by forming Ta2O5. In addition, the power conversion efficiencies of normal OPV with UVO-treated TaS2 and inverted OPV with TaS2 are 3.06 and 2.73%, which are higher than those of OPV without TaS2 (1.56% for normal OPV and 0.22% for inverted OPV). These results indicate that TaS2 is a promising material for HEL and EEL layers in OPVs.
RESUMO
A comparison was performed between the use of graphene oxide (GO) and reduced graphene oxide (rGO) as a hole extraction layer (HEL) in organic photovoltaic (OPV) cells with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester. Hydrazine hydrate (HYD) and the thermal method (Thermal) were adopted to change the GO to rGO. The GO HEL was deposited on an indium tin oxide electrode by spin coating, followed by the reduction process to form the rGO HELs. The success of the reduction processes was confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoemission spectroscopy, transmittance, and 2-point probe method. The OPV cell with the GO (-3 nm) HEL exhibits an increased power conversion efficiency (PCE) as high as 2.5% under 100 mW/cm2 illumination under air mass conditions, which is higher than that of the OPV cell without HEL, viz. 1.78%. However, the PCE of the OPV cell with rGO HEL is not high as the values of 1.8% for the HYD-rGO and 1.9% for the Thermal-rGO. The ultraviolet photoemission spectroscopy results showed that the work function of GO was 4.7 eV, but those of HYD-rGO and Thermal-rGO were 4.2 eV and 4.5 eV, respectively. Therefore, it is considered that GO is adequate to extract the holes from the active layer, but HYD-rGO and Thermal-rGO are not appropriate to use as HELs in OPV cells from the viewpoint of the energy alignment.
Assuntos
Fontes de Energia Elétrica , Grafite/química , Nanopartículas/química , Compostos Orgânicos/química , Óxidos/química , Energia Solar , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Grafite/efeitos da radiação , Luz , Teste de Materiais , Nanopartículas/efeitos da radiação , Nanopartículas/ultraestrutura , Compostos Orgânicos/efeitos da radiação , Óxidos/efeitos da radiaçãoRESUMO
Formation of type II heterojunctions is a promising strategy to enhance the photoelectrochemical performance of water-splitting photoanodes, which has been tremendously studied. However, there have been few studies focusing on the formation of type II heterojunctions depending on the thickness of the overlayer. Here, enhanced photoelectrochemical activities of a Fe2O3 film deposited-BiVO4/WO3 heterostructure with different thicknesses of the Fe2O3 layer have been investigated. The Fe2O3 (10 nm)/BiVO4/WO3 heterojunction photoanode shows a much higher photocurrent density compared to the Fe2O3 (100 nm)/BiVO4/WO3 photoanode. The Fe2O3 (10 nm)/BiVO4/WO3 trilayer heterojunction anodes have sequential type II junctions, while a thick Fe2O3 overlayer forms an inverse type II junction between Fe2O3 and BiVO4. Furthermore, the incident-photon-to-current efficiency measured under back-illumination is higher than those measured under front-illumination, demonstrating the importance of the illumination sequence for light absorption and charge transfer and transport. This study shows that the thickness of the oxide overlayer influences the energy band alignment and can be a strategy to improve solar water splitting performance. Based on our findings, we propose a photoanode design strategy for efficient photoelectrochemical water splitting.
RESUMO
Although bismuth vanadate (BiVO4) has been promising as photoanode material for photoelectrochemical water splitting, its charge recombination issue by short charge diffusion length has led to various studies about heterostructure photoanodes. As a hole blocking layer of BiVO4, titanium dioxide (TiO2) has been considered unsuitable because of its relatively positive valence band edge and low electrical conductivity. Herein, a crystal facet engineering of TiO2 nanostructures is proposed to control band structures for the hole blocking layer of BiVO4 nanodots. We design two types of TiO2 nanostructures, which are nanorods (NRs) and nanoflowers (NFs) with different (001) and (110) crystal facets, respectively, and fabricate BiVO4/TiO2 heterostructure photoanodes. The BiVO4/TiO2 NFs showed 4.8 times higher photocurrent density than the BiVO4/TiO2 NRs. Transient decay time analysis and time-resolved photoluminescence reveal the enhancement is attributed to the reduced charge recombination, which is originated from the formation of type II band alignment between BiVO4 nanodots and TiO2 NFs. This work provides not only new insights into the interplay between crystal facets and band structures but also important steps for the design of highly efficient photoelectrodes.
RESUMO
Natural calcium phosphate cements (CPCs) derived from sintered animal bone have been investigated to treat bone defects, but their low mechanical strength remains a critical limitation. Graphene improves the mechanical properties of scaffolds and promotes higher osteoinduction. To this end, reduced graphene oxide-incorporated natural calcium phosphate cements (RGO-CPCs) are fabricated for reinforcement of CPCs' characteristics. Pulsed electromagnetic fields (PEMFs) were additionally applied to RGO-CPCs to promote osteogenic differentiation ability. The fabricated RGO-CPCs show distinct surface properties and chemical properties according to the RGO concentration. The RGO-CPCs' mechanical properties are significantly increased compared to CPCs owing to chemical bonding between RGO and CPCs. In in vitro studies using a mouse osteoblast cell line and rat-derived adipose stem cells, RGO-CPCs are not severely toxic to either cell type. Cell migration study, western blotting, immunocytochemistry, and alizarin red staining assay reveal that osteoinductivity as well as osteoconductivity of RGO-CPCs was highly increased. In in vivo study, RGO-CPCs not only promoted bone ingrowth but also enhanced osteogenic differentiation of stem cells. Application of PEMFs enhanced the osteogenic differentiation of stem cells. RGO-CPCs with PEMFs can overcome the flaws of previously developed natural CPCs and are anticipated to open the gate to clinical application for bone repair and regeneration.
RESUMO
One of the well-known strategies for achieving high-performance light-activated gas sensors is to design a nanostructure for effective surface responses with its geometric advances. However, no study has gone beyond the benefits of the large surface area and provided fundamental strategies to offer a rational structure for increasing their optical and chemical performances. Here, a new class of UV-activated sensing nanoarchitecture made of highly periodic 3D TiO2, which facilitates 55 times enhanced light absorption by confining the incident light in the nanostructure, is prepared as an active gas channel. The key parameters, such as the total 3D TiO2 film and thin-shell thicknesses, are precisely optimized by finite element analysis. Collectively, this fundamental design leads to ultrahigh chemoresistive response to NO2 with a theoretical detection limit of ≈200 ppt. The demonstration of high responses with visible light illumination proposes a future perspective for light-activated gas sensors based on semiconducting oxides.
RESUMO
The control and promotion of plant and crop growth are important challenges globally. In this study, we have developed a nanomaterial-assisted bionic strategy for accelerating plant growth. Although nanomaterials have been shown to be toxic to plants, we demonstrate herein that graphene oxide can be used as a regulator tool for enhancing plant growth and stability. Graphene oxide was added to the growth medium of Arabidopsis thaliana L. as well as injected into the stem of the watermelon plant. We showed that with an appropriate amount provided, graphene oxide had a positive effect on plant growth in terms of increasing the length of roots, the area of leaves, the number of leaves, and the formation of flower buds. In addition, graphene oxide affected the watermelon ripeness, increasing the perimeter and sugar content of the fruit. We believe that graphene oxide may be used as a strategy for enabling the acceleration of both plant growth and the fruit ripening process.
RESUMO
The development of p-channel devices with comparable electrical performances to their n-channel counterparts has been delayed due to the lack of p-type semiconductor materials and device optimization. In this present work, we successfully demonstrated p-channel inorganic thin-film transistors (TFTs) with high hole mobilities similar to the values of n-channel devices. To boost the device performance, the solution-processed copper iodide (CuI) semiconductor was gated by a solid polymer electrolyte. The electrolyte gating could realize electrical double layer (EDL) formation and a three-dimensional carrier transport channel and thus substantially increased charge accumulation in the channel region and realized a high mobility above 90 cm2/(V s) (45.12 ± 22.19 cm2/(V s) on average). In addition, due to the high-capacitance EDL formed by electrolyte gating, the CuI TFTs exhibited a low operation voltage below 0.5 V (Vth = -0.045 V) and a high ON current level of 0.7 mA with an ON/OFF ratio of 1.52 × 103. We also evaluated the operational stabilities of CuI TFTs and the devices showed 80% retention under electrical/mechanical stress. All the active layers of the transistors were fabricated by solution processes at low temperatures (<100 °C), indicating their potential use for flexible, wearable, and high-performance electronic applications.
RESUMO
In order to develop high performance chemoresistive gas sensors for Internet of Everything applications, low power consumption should be achieved due to the limited battery capacity of portable devices. One of the most efficient ways to reduce power consumption is to lower the operating temperature to room temperature. Herein, we report superior gas sensing properties of SnS2 nanograins on SiO2 nanorods toward NO2 at room temperature. The gas response is as high as 701% for 10 ppm of NO2 with excellent recovery characteristics and the theoretical detection limit is evaluated to be 408.9 ppb at room temperature, which has not been reported for SnS2-based gas sensors to the best of our knowledge. The SnS2 nanograins on the template used in this study have excessive sulfur component (Sn:S = 1:2.33) and exhibit p-type conduction behavior. These results will provide a new perspective of nanostructured two-dimensional materials for gas sensor applications on demand.
Assuntos
Técnicas de Química Analítica/instrumentação , Limite de Detecção , Dióxido de Nitrogênio/análise , Dióxido de Silício/química , Sulfetos/química , Temperatura , Compostos de Estanho/química , Modelos Moleculares , Conformação Molecular , Dióxido de Nitrogênio/química , PorosidadeRESUMO
Nonequilibrium deposition is a remarkable method for the in situ growth of unique nanostructures and phases for the functionalization of thin films. We introduce a distinctive structure of a mixed-phase, composed of BiVO4 and ß-Bi2O3, for photoelectrochemical water splitting. The mixed-phase is fabricated via nonequilibrium deposition by adjusted oxygen partial pressure. According to density functional theory calculations, we find that vanadium exsolution can be facilitated by introducing oxygen vacancies, enabling the fabrication of a nanostructured mixed-phase. These unique structures enhance charge migration by increasing the interfacial area and properly aligning the band offset between two crystalline phases. Consequently, the photocurrent density of the nanostructured mixed-phase thin films is about twice that of pristine BiVO4 thin films at 1.23 VRHE. Our work suggests that nonequilibrium deposition provides an innovative route for the structural engineering of photoelectrodes for the understanding of fundamental properties and improving the photocatalytic performance for solar water splitting.
RESUMO
We report a novel Cd-free ZnTiO buffer layer deposited by atomic layer deposition for Cu(In,Ga)Se2 (CIGS) solar cells. Wet pretreatments of the CIGS absorbers with NH4OH, H2O, and/or aqueous solution of Cd2+ ions were explored to improve the quality of the CIGS/ZnTiO interface, and their effects on the chemical state of the absorber and the final performance of Cd-free CIGS devices were investigated. X-ray photoelectron spectroscopy (XPS) analysis revealed that the aqueous solution etched away sodium compounds accumulated on the CIGS surface, which was found to be detrimental for solar cell operation. Wet treatment with NH4OH solution led to a reduced photocurrent, which was attributed to the thinning (or removal) of an ordered vacancy compound (OVC) layer on the CIGS surface as evidenced by an increased Cu XPS peak intensity after the NH4OH treatment. However, the addition of Cd2+ ions to the NH4OH aqueous solution suppressed the etching of the OVC by NH4OH, explaining why such a negative effect of NH4OH is not present in the conventional chemical bath deposition of CdS. The band alignment at the CIGS/ZnTiO interface was quantified using XPS depth profile measurements. A small cliff-like conduction band offset of -0.11 eV was identified at the interface, which indicates room for further improvement of efficiency of the CIGS/ZnTiO solar cells once the band alignment is altered to a slight spike by inserting a passivation layer with a higher conduction band edge than ZnTiO. Combination of the small cliff conduction band offset at the interface, removal of the Na compound via water, and surface doping by Cd ions allowed the application of ZnTiO buffer to CIGS treated with Cd solutions, exhibiting an efficiency of 80% compared to that of a reference CIGS solar cell treated with the CdS.
RESUMO
The band edge positions of semiconductors determine functionality in solar water splitting. While ligand exchange is known to enable modification of the band structure, its crucial role in water splitting efficiency is not yet fully understood. Here, ligand-engineered manganese oxide cocatalyst nanoparticles (MnO NPs) on bismuth vanadate (BiVO4) anodes are first demonstrated, and a remarkably enhanced photocurrent density of 6.25 mA cm-2 is achieved. It is close to 85% of the theoretical photocurrent density (≈7.5 mA cm-2) of BiVO4. Improved photoactivity is closely related to the substantial shifts in band edge energies that originate from both the induced dipole at the ligand/MnO interface and the intrinsic dipole of the ligand. Combined spectroscopic analysis and electrochemical study reveal the clear relationship between the surface modification and the band edge positions for water oxidation. The proposed concept has considerable potential to explore new, efficient solar water splitting systems.
RESUMO
Nanocrystal quantum dots (QDs) provide tunable optoelectronic properties on the basis of their dimension. CdSe QDs, which are size-dependent colloidal nanocrystals, are used for efficient electrochromic devices owing to their unique properties in modulating quantum confinement, resulting in enhanced electron insertion during the electrochromic process. Incorporating a well-known metal oxide electrochromic material such as WO3 into CdSe QDs enhances the redox process. Herein, we propose a facile method for producing and optimizing CdSe QDs doped in WO3. The fabrication of the electrochromic film involves a solution and annealing process. Moreover, the effect of the QD size to optimize the electrochromic layer is studied. As a result, the coloration efficiency of WO3 and optimized CdSe QD-WO3 are obtained as 68.6 and 112.3 cm2/C, respectively. Thus, size-tunable nanocrystal QDs combined with a metal oxide yield high-performance electrochromic devices and are promising candidates for producing smart windows.
RESUMO
Herein, we fabricated a super-hydrophobic SERS substrate using Sn-doped indium oxide (Indium-tin-oxide: ITO) nano-branches as a template. ITO nano-branches with tens of nanometer diameter are first fabricated through the vapor-liquid-solid (VLS) growth to provide roughness of the substrate. 10 nm thickness of Ag thin film was deposited and then treated with the post-annealing process to create numerous air-pockets in the Ag film, forming a hierarchical Ag nanostructures. The resulting substrate obtained Cassie's wetting property with a water contact angle of 151°. Compared to the normal hydrophobic Ag nanoparticle substrate, increase of about 4.25-fold higher SERS signal was obtained for 7 µL of rhodamine 6G aqueous solutions.
RESUMO
Silicon nanowires (SiNWs) opened up exciting possibilities in a variety of research fields due to their unique anisotropic morphologies, facile tuning capabilities, and accessible fabrication methods. The SiNW-based photoelectrochemical (PEC) conversion has recently been known to provide an efficiency superior to that of various photo-responsive semiconductor heterostructures. However, a challenge still remains in designing optimum structures to minimize photo-oxidation and photo-corrosion of the Si surface in a liquid electrolyte. Here, we report a simple method to synthesize hierarchically branched carbon nanowires (CNWs) on SiNWs utilizing copper vapor as the catalyst in a chemical vapor deposition (CVD) process, which exhibits outstanding photocatalytic activities for hydrogen generation along with excellent chemical stability against oxidation and corrosion. Thus, we believe that the CNW-SiNW photoelectrodes would provide a new route to developing high-performing cost-effective catalysts essential for advanced energy conversion and storage technologies.