Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400538, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600896

RESUMO

This research adopts a new method combining calcination and pulsed laser irradiation in liquids to induce a controlled phase transformation of Fe, Co, Ni, Cu, and Mn transition-metal-based high-entropy Prussian blue analogs into single-phase spinel high-entropy oxide and face-centered cubic high-entropy alloy (HEA). The synthesized HEA, characterized by its highly conductive nature and reactive surface, demonstrates exceptional performance in capturing low-level nitrite (NO2 -) in an electrolyte, which leads to its efficient conversion into ammonium (NH4 +) with a Faradaic efficiency of 79.77% and N selectivity of 61.49% at -0.8 V versus Ag/AgCl. In addition, the HEA exhibits remarkable durability in the continuous nitrite reduction reaction (NO2 -RR), converting 79.35% of the initial NO2 - into NH4 + with an impressive yield of 1101.48 µm h-1 cm-2. By employing advanced X-ray absorption and in situ electrochemical Raman techniques, this study provides insights into the indirect NO2 -RR, highlighting the versatility and efficacy of HEA in sustainable electrochemical applications.

2.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38832743

RESUMO

Superfluid helium nanodroplets are unique nanomatrices for the isolation and study of transient molecular species, such as radicals, carbenes, and ions. In this work, isomers of C3H4+ were produced upon electron ionization of propyne and allene molecules and interrogated via infrared spectroscopy inside He nanodroplet matrices. It was found that the spectrum of C3H4+ has at least three distinct groups of bands. The relative intensities of the bands depend on the precursor employed and its pickup pressure, which indicates the presence of at least three different isomers. Two isomers were identified as allene and propyne radical cations. The third isomer, which has several new bands in the range of 3100-3200 cm-1, may be the elusive vinylmethylene H2C=CH-CH+ radical cation. The observed bands for the allene and propyne cations are in good agreement with the results of density functional theory calculations. However, there is only moderate agreement between the new bands and the theoretically calculated vinylmethylene spectrum, which indicates more work is necessary to unambiguously assign it.

3.
Small ; 19(27): e2207820, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36974611

RESUMO

High-entropy oxides (HEO) have recently concerned interest as the most promising electrocatalytic materials for oxygen evolution reactions (OER). In this work, a new strategy to the synthesis of HEO nanostructures on Ti3 C2 Tx MXene via rapid microwave heating and subsequent calcination at a low temperature is reported. Furthermore, the influence of HEO loading on Ti3 C2 Tx MXene is investigated toward OER performance with and without visible-light illumination in an alkaline medium. The obtained HEO/Ti3 C2 Tx -0.5 hybrid exhibited an outstanding photoelectrochemical OER ability with a low overpotential of 331 mV at 10 mA cm-2 and a small Tafel slope of 71 mV dec-1 , which exceeded that of a commercial IrO2 catalyst (340 mV at 10 mA cm-2 ). In particular, the fabricated water electrolyzer with the HEO/Ti3 C2 Tx -0.5 hybrid as anode required a less potential of 1.62 V at 10 mA cm-2 under visible-light illumination. Owing to the strong synergistic interaction between the HEO and Ti3 C2 Tx MXene, the HEO/Ti3 C2 Tx hybrid has a great electrochemical surface area, many metal active sites, high conductivity, and fast reaction kinetics, resulting in an excellent OER performance. This study offers an efficient strategy for synthesizing HEO-based materials with high OER performance to produce high-value hydrogen fuel.

4.
Environ Res ; 221: 115289, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640936

RESUMO

Arsenic (As(V))-contaminated water is a major global threat to human health and the ecosystem because of its enormous toxicity, carcinogenicity, and high distribution in water streams. Thus, As(V) removal in the environmental samples has received considerable attention. Till now, numerous metal-organic framework materials have been used for the As(V) removal from the aqueous medium, but low As(V) removal and instability of the adsorbents have severely cut off their practical applications. In this study, a ferrocene-encapsulated zeolitic imidazolate framework-67 (Fc-ZIF-67) material was synthesized for As(V) removal from an aqueous solution at neutral pH using a simple solution mixing process. The ferrocene encapsulation provides water-stable and structural defects to ZIF-67. Furthermore, the ferrocene molecule and imidazole linker can enhance As(V) adsorption via both chemisorption and physisorption. The novel Fc-ZIF-67 adsorbent exhibited superior As(V) adsorption performance with an adsorption capacity of 63.29 mg/g at neutral pH. The Langmuir and Freundlich isotherm models were also used to analyze adsorption behavior.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Humanos , Zeolitas/química , Ecossistema , Metalocenos , Água/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
5.
Environ Res ; 226: 115660, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913997

RESUMO

Eco-friendly renewable energy sources have recommended as fossil fuel alternatives in recent years to reduce environmental pollution and meet future energy demands in various sectors. As the largest source of renewable energy in the world, lignocellulosic biomass has received considerable interest from the scientific community to advance the fabrication of biofuels and ultrafine value-added chemicals. For example, biomass obtained from agricultural wastes could catalytically convert into furan derivatives. Among furan derivatives, 5-hydroxymethylfurfural (HMF) and 2, 5-dimethylfuran (DMF) are considered the most useful molecules that can be transformed into desirable products such as fuels and fine chemicals. Because of its exceptional properties, e.g., water insolubility and high boiling point, DMF has studied as the ideal fuel in recent decades. Interestingly, HMF, a feedstock upgraded from biomass sources can easily hydrogenate to produce DMF. In the present review, the current state of the art and studies on the transformation of HMF into DMF using noble metals, non-noble metals, bimetallic catalysts, and their composites have discussed elaborately. In addition, comprehensive insights into the operating reaction conditions and the influence of employed support over the hydrogenation process have demonstrated.


Assuntos
Biocombustíveis , Lignina , Biomassa , Lignina/química , Furanos
6.
Environ Res ; 229: 115940, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080276

RESUMO

Long-term exposure to the highly toxic heavy metal arsenic can harm ecological systems and pose serious health risks to humans. Arsenic pollutant in water and the food chain must be addressed, and active prompt detection of As(III) is essential. The development of an effective detection method for As(III) ions is urgently needed to slow the alarming growth of arsenic pollution in the environment and safeguard the well-being of future generations. This study presents the results of our exhaustive investigation into cubic CsPbBr3 single crystals, the glassy carbon (GC) electrode modification with CsPbBr3 single crystals prepared by direct solvent evaporation, as well as our observations of the material's remarkable electrocatalytic properties and exceptional anti-interference sensing of As(III) ions in neutral pH media. The developed CsPbBr3/GC is exceptionally useful for the ultra-sensitive and specific identification of arsenic in water, exhibiting a detection limit of 0.381 µmol/L, a rapid response across a defined range of 0.1-25 µmol/L, and an ultra-sensitivity of 0.296 µA/µmolL-1. CsPbBr3/GCE (prepared without a specific reagent) is superior to other modified electrodes used as sensors in electrocatalytic activity, detection limit, analytical sensitivity, and stability response.


Assuntos
Arsênio , Humanos , Limite de Detecção , Arsênio/análise , Substâncias Perigosas , Técnicas Eletroquímicas/métodos , Água , Carbono/química
7.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37309895

RESUMO

Infrared (IR) spectroscopy using ultracold helium nanodroplet matrices has proven to be a powerful method to interrogate encapsulated ions, molecules, and clusters. Due to the helium droplets' high ionization potential, optical transparency, and ability to pick up dopant molecules, the droplets offer a unique modality to probe transient chemical species produced via photo- or electron impact ionization. In this work, helium droplets were doped with acetylene molecules and ionized via electron impact. Ion-molecule reactions within the droplet volume yield larger carbo-cations that were studied via IR laser spectroscopy. This work is focused on cations containing four carbon atoms. The spectra of C4H2+, C4H3+, and C4H5+ are dominated by diacetylene, vinylacetylene, and methylcyclopropene cations, respectively, which are the lowest energy isomers. On the other hand, the spectrum of C4H4+ ions hints at the presence of several co-existing isomers, the identity of which remains to be elucidated.

8.
Small ; 18(47): e2204309, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36192152

RESUMO

Herein, the authors produce Co-based (Co3 (PO4 )2 , Co3 O4 , and Co9 S8 ) electrocatalysts via pulsed laser ablation in liquid (PLAL) to explore the synergy of anion modulation on phase-selective active sites in the electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Co3 (PO4 )2 displays an ultralow overpotential of 230 mV at 10 mA cm-2 with 48.5 mV dec-1 Tafel slope that outperforms the state-of-the-art Ir/C in OER due to its high intrinsic activity. Meanwhile, Co9 S8 exhibits the highest HER performance known to the authors among the synthesized Co-based catalysts, showing the lowest overpotential of 361 mV at 10 mA cm-2 with 95.8 mV dec-1 Tafel slope in the alkaline medium and producing H2 gas with ≈500 mmol g-1 h-1 yield rate under -0.45 V versus RHE. The identified surface reactive intermediates over in situ electrochemical-Raman spectroscopy reveal that cobalt(hydr)oxides with higher oxidation states of Co-cation forming under oxidizing potentials on the electrode-electrolyte surface of Co3 (PO4 )2 facilitate the OER, while Co(OH)2 facilitate the HER. Notably, the fabricated two-electrode electrolyzers using Co3 (PO4 )2 , Co3 O4 , and Co9 S8 electrocatalysts deliver the cell potentials ≈2.01, 2.11, and 1.89 V, respectively, at 10 mA cm-2 . This work not only shows PLAL-synthesized electrocatalysts as promising candidates for water splitting, but also provides an underlying principle for advanced energy-conversion catalysts and beyond.

9.
Environ Res ; 204(Pt C): 112340, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34740621

RESUMO

Herein, we fabricated a more sensitive nonenzymatic electrochemical sensor for the selective determination of hydroquinone as a targeted pollutant at zinc@zinc oxide (Zn@ZnO) core-shell nanostructures. The nanostructured Zn@ZnO materials were produced using pulsed laser ablation in an aqueous medium without the use of any reducing agents or surfactants. The detailed structural, morphological, elemental composition, and electrochemical voltammetric analyses revealed a significant improvement in Zn@ZnO performance for selective hydroquinone detection. A broad linear calibration response was obtained as 10-90 µM with high sensitivity of 0.5673 µA µM-1 cm-2 and the low detection limit was 0.10443 µM for detection of hydroquinone. The modified Zn@ZnO electrode's excellent electrochemical sensing performance was attributed to the accessibility of a high electrochemically active surface area (EASA = 0.00345 µF/cm2) and an improved electron transfer rate. Stability and antiinterference tests were also carried out. A 100 fold increase in the concentration of common cations and anions (Na+, Mg2+, Cl-, SO42-, and NO3-) did not affect the selective determination of HQ. As a result, the fabricated electrochemical sensor has a wide range of potential applications in environmental and biomedical science.


Assuntos
Terapia a Laser , Óxido de Zinco , Técnicas Eletroquímicas , Hidroquinonas , Zinco , Óxido de Zinco/química
10.
Environ Res ; 214(Pt 1): 113742, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35753376

RESUMO

The synthesis of bilayer heterojunctions has received considerable attention recently. Fabrication of novel bilayer composites is of significant interest to improve their photocatalytic efficiency. In this study, molybdenum disulfide (MoS2), a layered dichalcogenide material exhibiting unique properties, in combination with graphitic carbon nitride (g-C3N4), a carbon-based layered material, was fabricated with small amounts of zinc oxide (ZnO). Three composites, MoS2/g-C3N4, MoS2/ZnO, and MoS2/g-C3N4/ZnO were prepared via a simple exfoliation method and characterized by various physicochemical methods. The Z-scheme charge transfer mechanism in the prepared ternary composite improves efficiency by inhibiting the recombination rate of electron-hole pairs. It has shown excellent performance in degrading a major water contaminant, malachite green (MG) dye, under visible light irradiation.

11.
Environ Res ; 204(Pt B): 112113, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34563528

RESUMO

Nanomodification of ultrafiltration (UF) membranes has been shown to be a simple and efficient technique for the preparation of high-performance membranes. In this work, an iron oxide functionalized halloysite nanoclay (Fe-HNC) nanocomposite was prepared and used as a nanofiller for polyethersulfone (PES) membranes. The effect of Fe-HNC concentration on the filtration performance of the membrane was investigated by varying the nanocomposite dosage (0-0.5 wt %) in the casting dope. Various characterization studies showed that the incorporation of Fe-HNC nanocomposites improved the membrane morphology and enhanced the surface properties, thermal stability, mechanical strength, hydrophilicity, and porosity. The permeability to pure water and filtration of humic acid (HA) were significantly improved by incorporating Fe-HNC into the PES membranes. The membrane with Fe-HNC loading of 0.1 wt % exhibited the highest pure water permeability (174.3 L/(m2 h bar)) and removal of HA (90.1 %), which were 1.8 times and 29 % higher, respectively than the pristine PES membrane. Moreover, fouling studies showed the enhanced antifouling ability of the Fe-HNC nanocomposites modified PES membranes, especially against irreversible fouling. Continuous membrane regeneration-based fouling removal studies from HA showed that the PES/0.1 wt % Fe-HNC membrane exhibited a high fouling recovery of 70.4 % with very low reversible and irreversible fouling resistance of 9.61 % and 14.78 %, respectively, compared to the pristine PES membrane (fouling recovery: 40.4 %; reversible fouling: 21.7 %; irreversible fouling: 20.1 %). Overall, the Fe-HNC nanocomposite proved to be an effective nanomodifier for improving the permeability of PES membranes and the antifouling ability to treat HA polluted aqueous streams.


Assuntos
Substâncias Húmicas , Nanocompostos , Argila , Compostos Férricos , Substâncias Húmicas/análise , Membranas Artificiais , Polímeros , Sulfonas
12.
Environ Res ; 215(Pt 1): 114154, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36037916

RESUMO

The biochemical reduction of nitrite (NO2-) ions to ammonia (NH3) requires six electrons and is catalyzed by the cytochrome c NO2- reductase enzyme. This biological reaction inspired scientists to explore the reduction of nitrogen oxyanions, such as nitrate (NO3-) and NO2- in wastewater, to produce the more valuable NH3 product. It is widely known that copper (Cu)-based nanoparticles (NPs) are selective for the NO3- reduction reaction (NO3-RR), but the NO2-RR has not been well explored. Therefore, we attempted to address the electrocatalytic conversion of NO2- to NH3 using Cu@Cu2O core-shell NPs to simultaneously treat wastewater by removing NO2- and producing valuable NH3. The Cu@Cu2O core-shell NPs were constructed using the pulsed laser ablation of Cu sheet metal in water. The core-shell nanostructure of these particles was confirmed by various characterization techniques. Subsequently, the removal of NO2- and the ammonium (NH4+)-N yield rate were estimated using the Griess and indophenol blue methods, respectively. Impressively, the Cu@Cu2O core-shell NPs exhibited outstanding NO2-RR activity, demonstrating a maximum NO2- removal efficiency of approximately 94% and a high NH4+-N yield rate of approximately 0.03 mmol h-1.cm-2 at -1.6 V vs. a silver/silver chloride reference electrode under optimal conditions. The proposed NO2-RR mechanism revealed that the (111) facet of Cu favors the selective conversion of NO2- to NH3 via a six-electron transfer. This investigation may offer a new insight for the rational design and detailed mechanistic understanding of electrocatalyst architecture for the effective conversion of NO2- to NH4+.


Assuntos
Compostos de Amônio , Nanoestruturas , Amônia/química , Cobre/química , Citocromos c/metabolismo , Indofenol , Lasers , Nitratos/análise , Nitritos , Nitrogênio , Dióxido de Nitrogênio , Oxirredução , Oxirredutases/metabolismo , Prata , Águas Residuárias , Água
13.
J Chem Phys ; 156(20): 204306, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649867

RESUMO

Helium droplets are unique hosts for isolating diverse molecular ions for infrared spectroscopic experiments. Recently, it was found that electron impact ionization of ethylene clusters embedded in helium droplets produces diverse carbocations containing three and four carbon atoms, indicating effective ion-molecule reactions. In this work, similar experiments are reported but with the saturated hydrocarbon precursor of ethane. In distinction to ethylene, no characteristic bands of larger covalently bound carbocations were found, indicating inefficient ion-molecule reactions. Instead, the ionization in helium droplets leads to formation of weaker bound dimers, such as (C2H6)(C2H4)+, (C2H6)(C2H5)+, and (C2H6)(C2H6)+, as well as larger clusters containing several ethane molecules attached to C2H4 +, C2H5 +, and C2H6 + ionic cores. The spectra of larger clusters resemble those for neutral, neat ethane clusters. This work shows the utility of the helium droplets to study small ionic clusters at ultra-low temperatures.

14.
Environ Res ; 194: 110741, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450234

RESUMO

The sensitive and selective detection of nitroexplosive molecules thorough a simple methodology has received a significant field of research affecting global security and public safety. In the present study, the synthesis of anthracene-based chalcone (S1) was conducted using a simple condensation method. S1 was found to exhibit unique properties, such as aggregation-induced emission in solution and mechanochromic behavior in solid state. A fluorescent aggregate was applied to sense electron-deficient picric acid (PA) and 2,4-dinitrophenol (2,4-DNP) in an aqueous solution. Notably, the developed test strip-based sensor (S1) could be used to effectively detect PA and 2,4-DNP, which were visualized by the naked eye. Photophysical analysis revealed the occurrence of an electron transfer from electron-rich S1 to the electron-deficient nitro compounds, which was confirmed using density functional theory and 1H-nuclear magnetic resonance studies. In addition, the observed results confirmed the simple synthesis of S1 as a promising material for the development of test strip-based sensor devices for the detection of toxic and explosive aromatic nitro molecules.


Assuntos
Substâncias Explosivas , Corantes Fluorescentes , Antracenos , Elétrons , Substâncias Explosivas/análise , Água
15.
Environ Res ; 202: 111668, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34246639

RESUMO

Barium titanate (BaTiO3) has attracted considerable attention as a perovskite ferroelectric ceramic material for electronic multilayer ceramic capacitors (MLCCs). Fine BaTiO3 nanopowders with a considerably high tetragonality directly influence the typical properties of nanopowders; however, their synthesis has remained challenging. In this study, we analyzed the effect of two different TiO2 powders with anatase and rutile phases in a solid-state reaction with barium carbonate (BaCO3). The effect of the particle size ratio (TiO2/BaCO3) of the raw materials on the tetragonality and particle size of the as-synthesized BaTiO3 powders was also determined through extensive characterization of the powders by X-ray diffraction, field-emission scanning electron microscopy, and Raman spectroscopy. The present investigation reveals that the design BaTiO3 structure is expected to advance the development of efficient catalytic and sensor materials for sustainable environmental applications.


Assuntos
Compostos de Bário , Titânio , Tamanho da Partícula , Difração de Raios X
16.
Environ Res ; 197: 111080, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775677

RESUMO

The present study investigated the effect of various solvents on the tunable surface morphology and photocatalytic activity (PCA) of bismuth oxyiodide (BiOI), which could be used for the reduction of Cr(VI) under visible light irradiation (VLI). BiOI samples exhibiting different morphologies, i.e., two-dimensional square-like nanosheet and three-dimensional hierarchical flower-like morphology, were synthesized by a hydro/solvothermal process using different solvents, namely H2O, MeOH, EtOH, and ethylene glycol (EG). The crystal structure, surface morphology, surface area, light-absorption capability, and recombination rate of the photogenerated charge carriers were examined by X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, UV-vis diffuse reflectance spectroscopy, photoluminescence, and transient photocurrent analyses, respectively. The BiOI sample fabricated in EG showed excellent photocatalytic efficiency (~99%) for the reduction of Cr(VI) after 90 min under VLI. The enhanced PCA demonstrated that the high surface area and well-structured surface characteristics of flower-like 3D BiOI microspheres played important roles in the photoreduction process. Moreover, a plausible mechanism for the reduction of Cr(VI) over the EG-BiOI photocatalyst was proposed. The results of the PCA evaluation and recycle test revealed that 3D EG-BiOI microspheres could serve as promising materials for the efficient removal of Cr(VI) from wastewater. Additionally, EG-BiOI could be utilized in other environmental remediation processes.


Assuntos
Bismuto , Águas Residuárias , Catálise , Cromo , Luz , Solventes
17.
Phys Chem Chem Phys ; 21(27): 14766-14774, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31222195

RESUMO

The rotationally resolved electronic spectrum of 4-cyanoindole and some N-D and C-D deuterated isotopologues has been measured and analyzed. Dipole moments in the ground and electronically excited state have been determined, using electronic Stark spectroscopy. From the geometry changes upon excitation, orientation of the transition dipole moment, and the values for the permanent dipole moments, the lowest excited singlet state could be shown to be of La symmetry. The excited state lifetime of isolated 4-cyanoindole has been determined to be 11 ns, while for the ringdeuterated isotopologues lifetimes between 5 and 6 ns have been found. The different behavior of 3-, 4-, and 5-cyanoindole is discussed on the basis of the different electronic nature of the electronically excited singlet states.

18.
J Phys Chem A ; 123(41): 8913-8920, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31549840

RESUMO

The induced circular dichroism (ICD) of phenol complexed with (R)-(-)-2-butanol [PhOH-(-)BOH] in a supersonic jet is investigated using resonant two-photon ionization circular dichroism (R2PICD) spectroscopy. The R2PICD spectrum of PhOH-(-)BOH exhibits nonzero ICD bands near the absorption region of bare PhOH, where (-)BOH is transparent. Two different conformers containing a single hydrogen bond between PhOH and (-)BOH are identified using ultraviolet-ultraviolet hole-burning and infrared ion-dip spectroscopy combined with quantum theoretical calculations. The ICD values of the two conformers are similar to each other. To understand these similar ICD effects of the conformers, the geometrical asymmetry of the PhOH moiety bound to (-)BOH and the coupling strength of the electric transition dipole moments between PhOH and (-)BOH are estimated. Comparing the ICD values of PhOH-(-)BOH with those of PhOH-(-)-l-methyl lactate in the previous report [ Hong , A. ; J. Phys. Chem. Lett. 2018 , 9 , 476 -480 ], we investigate the physical properties that may govern the differences of the ICD values between the two complexes.

19.
J Nanosci Nanotechnol ; 19(5): 2903-2908, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30501798

RESUMO

Uranium is a crucial raw material in the nuclear energy industry; however, its radioactive nature makes it a critically damaging component to both the atmosphere and human health. In this study, we report a simple and cost-effective selective colorimetric detection technique for UO2+2 using nitrophenyldiacetic acids (NPD)-functionalized gold nanoparticles (Au NPs 1). The hybrid Au NPs 1 can be induced to aggregate in the presence of UO2+2 ions. UO2+2 can be recognized by the colorimetric response of hybrid Au NPs 1, which can be observed by a UV-Vis spectrophotometer and it is easily detectable by the naked eye. The hybrid Au NPs 1 bound by UO2+2 possess a good selective response compared to other metal ions (Li+, Na+, K+, Rb+, Cs+, Ca2+, Mg2+, Ba2+, Ni2+, Zn2+, and Co2+), which can be observed by a prominent color change. The color of the hybrid Au NPs 1 changed from red to dark red upon addition of UO2+2 in the presence of other metal ions. Job's plot demonstrates that one NPD moiety attached onto the surface of Au NPs 1 forms 1:1 stoichiometry with UO2+2, hence providing a simple and effective colorimetric sensor for the real-time detection of UO2+2.

20.
Molecules ; 24(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540329

RESUMO

: Sonochemical oxidation of organic pollutants in an aqueous environment is considered to be a green process. This mode of degradation of organic pollutants in an aqueous environment is considered to render reputable outcomes in terms of minimal chemical utilization and no need of extreme physical conditions. Indiscriminate discharge of toxic organic pollutants in an aqueous environment by anthropogenic activities has posed major health implications for both human and aquatic lives. Hence, numerous research endeavours are in progress to improve the efficiency of degradation and mineralization of organic contaminants. Being an extensively used advanced oxidation process, ultrasonic irradiation can be utilized for complete mineralization of persistent organic pollutants by coupling/integrating it with homogeneous and heterogeneous photocatalytic processes. In this regard, scientists have reported on sonophotocatalysis as an effective strategy towards the degradation of many toxic environmental pollutants. The combined effect of sonolysis and photocatalysis has been proved to enhance the production of high reactive-free radicals in aqueous medium which aid in the complete mineralization of organic pollutants. In this manuscript, we provide an overview on the ultrasound-based hybrid technologies for the degradation of organic pollutants in an aqueous environment.


Assuntos
Poluentes Ambientais/química , Biodegradação Ambiental , Catálise , Oxirredução , Fotólise , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA