Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nano Lett ; 22(13): 5198-5206, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35728001

RESUMO

Over the past few years, many efforts have been devoted to growing single-crystal graphene due to its great potential in future applications. However, a number of issues remain for single-crystal graphene growth, such as control of nanoscale defects and the substrate-dependent nonuniformity of graphene quality. In this work, we demonstrate a possible route toward single-crystal graphene by combining aligned nucleation of graphene nanograins on Cu/Ni (111) and sequential heat treatment over pregrown graphene grains. By use of a mobile hot-wire CVD system, prealigned grains were stitched into one continuous film with up to ∼97% single-crystal domains, compared to graphene grown on polycrystalline Cu, which was predominantly high-angle tilt boundary (HATB) domains. The single-crystal-like graphene showed remarkably high thermal conductivity and carrier mobility of ∼1349 W/mK at 350 K and ∼33 600 (38 400) cm2 V-1 s-1 for electrons (holes), respectively, which indicates that the crystallinity is high due to suppression of HATB domains.

2.
Nat Commun ; 15(1): 1996, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485943

RESUMO

Thermoelectric technology has potential for converting waste heat into electricity. Although traditional thermoelectric materials exhibit extremely high thermoelectric performances, their scarcity and toxicity limit their applications. Zinc oxide (ZnO) emerges as a promising alternative owing to its high thermal stability and relatively high Seebeck coefficient, while also being earth-abundant and nontoxic. However, its high thermal conductivity (>40 W m-1K-1) remains a challenge. In this study, we use a multi-step strategy to achieve a significantly high dimensionless figure-of-merit (zT) value of approximately 0.486 at 580 K (estimated value) by interfacing graphene quantum dots with 3D nanostructured ZnO. Here, we show the fabrication of graphene quantum dots interfaced 3D ZnO, yielding the highest zT value ever reported for ZnO counterparts; specifically, our experimental results indicate that the fabricated 3D GQD@ZnO exhibited a significantly low thermal conductivity of 0.785 W m-1K-1 (estimated value) and a remarkably high Seebeck coefficient of - 556 µV K-1 at 580 K.

3.
Front Bioeng Biotechnol ; 11: 1313494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179133

RESUMO

Tuberculosis (TB) has high morbidity as a chronic infectious disease transmitted mainly through the respiratory tract. However, the conventional diagnosis methods for TB are time-consuming and require specialists, making the diagnosis of TB with point-of-care (POC) detection difficult. Here, we developed a graphene-based field-effect transistor (GFET) biosensor for detecting the MPT64 protein of Mycobacterium tuberculosis with high sensitivity as a POC detection platform for TB. For effective conjugation of antibodies, the graphene channels of the GFET were functionalized by immobilizing 1,5-diaminonaphthalene (1,5-DAN) and glutaraldehyde linker molecules onto the graphene surface. The successful immobilization of linker molecules with spatial uniformity on the graphene surface and subsequent antibody conjugation were confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy. The GFET functionalized with MPT64 antibodies showed MPT64 detection with a detection limit of 1 fg/mL in real-time, indicating that the GFET biosensor is highly sensitive. Compared to rapid detection tests (RDT) and enzyme-linked immunosorbent assays, the GFET biosensor platform developed in this study showed much higher sensitivity but much smaller dynamic range. Due to its high sensitivity, the GFET biosensor platform can bridge the gap between time-consuming molecular diagnostics and low-sensitivity RDT, potentially aiding in early detection or management of relapses in infectious diseases.

4.
Sci Adv ; 8(21): eabm6310, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613258

RESUMO

The mass production of precise three-dimensional (3D) nanopatterns has long been the ultimate goal of fabrication technology. While interference lithography and proximity-field nanopatterning (PnP) may provide partial solutions, their setup complexity and limited range of realizable structures, respectively, remain the main problems. Here, we tackle these challenges by applying an inverse design to the PnP process. Our inverse design platform based on the adjoint method can efficiently find optimal phase masks for diverse target lattices and motifs. We fabricate a 2D rectangular array of nanochannels, which has not been reported for conventional PnP with normally incident light, as a proof of concept. With further demonstration of material conversion, our work provides versatile platforms for nanomaterial fabrication.

5.
ACS Appl Mater Interfaces ; 13(20): 24304-24313, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983698

RESUMO

Over the years, numerous studies have attempted to develop two-dimensional (2D) materials for improving both the applicability and performance of thermoelectric devices. Among the 2D materials, graphene is one of the promising candidates for thermoelectric materials owing to its extraordinary electrical properties, flexibility, and nontoxicity. However, graphene synthesized through traditional methods suffers from a low Seebeck coefficient and high thermal conductivity, resulting in an extremely low thermoelectric figure of merit (ZT). Here, we present an atomic-scale defect engineering strategy to improve the thermoelectric properties of graphene using embedded high-angle tilt boundary (HATB) domains in graphene films. These HATB domains serve as both energy filtering sites to filter out lower-energy charge carriers and scattering sites for phonons. Compared to the conventionally grown chemical vapor deposited graphene, the graphene with HATB domains shows an improved Seebeck coefficient (50.1 vs 21.1 µV K-1) and reduced thermal conductivity (382 vs 952 W m-1K-1), resulting in a ZT value that is ∼7 times greater at 350 K. This defect engineering strategy is promising not only for graphene-based materials but also for 2D materials, in general, where further research and optimization could overcome the limitations of conventional bulk thermoelectric materials in energy-harvesting systems.

6.
Nat Commun ; 12(1): 5008, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429436

RESUMO

Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings.


Assuntos
Técnicas Biossensoriais , Fontes de Energia Elétrica , Úlcera por Pressão , Pressão , Temperatura , Tecnologia sem Fio , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Monitorização Fisiológica , Pele , Termografia/instrumentação , Termografia/métodos
7.
ACS Nano ; 14(9): 12173-12183, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32880440

RESUMO

The cost-effective direct writing of polymer nanofibers (NFs) has garnered considerable research attention as a compelling one-pot strategy for obtaining key building blocks of electrochemical and optical devices. Among the promising applications, the changes in optical response from external stimuli such as mechanical deformation and changes in the thermal environment are of great significance for emerging applications in smart windows, privacy protection, aesthetics, artificial skin, and camouflage. Herein, we propose a rational design for the mass production of customized NFs through the development of focused electric-field polymer writing (FEPW) coupled with the roll-to-roll technique. As a proof of key applications, we demonstrate multistimuli-responsive (mechano- and thermochromism) membranes with an exceptional production scale (over 300 cm2). Specifically, the membranes consist of periodically aligned ultrathin (∼60 nm) alumina nanotubes inserted in the elastomers. We performed a two-phase finite element analysis of the unit cells to verify the underlying physics of light scattering at heterogeneous interfaces of the strain-induced air gaps. By adding thermochromic dye during the FEPW, the optical modulation of transmittance change (∼83% to 37% at visible wavelength) was successfully extended to high-contrast thermal-dependent coloration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA