Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Anal Chem ; 96(22): 8846-8854, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758170

RESUMO

Despite growing ecological concerns, studies on microplastics and nanoplastics are still in their initial stages owing to technical hurdles in analytical techniques, especially for nanoplastics. We provide an overview of the general attributes of micro/nanoplastics in natural environments and analytical techniques commonly used for their analysis. After demonstrating the analytical challenges associated with the identification of nanoplastics due to their distinctive characteristics, we discuss recent technological advancements for detecting nanoplastics.

2.
Nano Lett ; 20(3): 1526-1535, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31990561

RESUMO

Recent advanced studies on flexible and stretchable electronic devices and optoelectronics have made possible a variety of soft and more functional electronic devices. With consumer demand for highly functional or free-form displays, high flexibility and stretchability in light-emitting devices are needed. Herein, we developed a unique structure of stretchable substrates with pillar arrays to reduce the stress on the active area of devices when strain is applied. We confirmed the advantages of the produced structures using mechanical simulation tools and determined that the structures effectively lessen the applied stress of interconnection as well as the active area in a stretched state. With this stress-relief stretchable substrate, we realized stretchable OLEDs that are compliant and maintain their performance under high strain deformation. Also, devices can be stretched in the biaxis, which is superior to only one-directional stretchable electronics; as such, devices can be used in practical applications like wearable electronics and health monitoring systems. We propose, for the first time, stretchable OLEDs patterned by the thermal evaporation fabrication process onto stress-relief substrates. These OLEDs can mitigate certain problems in previous studies of stretchable OLEDs without need to find new materials or to use a prestrained fabrication process.

3.
Nano Lett ; 18(1): 347-356, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29210590

RESUMO

Fiber-based wearable displays, one of the most desirable requisites of electronic textiles (e-textiles), have emerged as a technology for their capability to revolutionize textile and fashion industries in collaboration with the state-of-the-art electronics. Nonetheless, challenges remain for the fibertronic approaches, because fiber-based light-emitting devices suffer from much lower performance than those fabricated on planar substrates. Here, we report weavable and highly efficient fiber-based organic light-emitting diodes (fiber OLEDs) based on a simple, cost-effective and low-temperature solution process. The values obtained for the fiber OLEDs, including efficiency and lifetime, are similar to that of conventional glass-based counterparts, which means that these state-of-the-art, highly efficient solution processed planar OLEDs can be applied to cylindrical shaped fibers without a reduction in performance. The fiber OLEDs withstand tensile strain up to 4.3% at a radius of 3.5 mm and are verified to be weavable into textiles and knitted clothes by hand-weaving demonstrations. Furthermore, to ensure the scalability of the proposed scheme fiber OLEDs with several diameters of 300, 220, 120, and 90 µm, thinner than a human hair, are demonstrated successfully. We believe that this approach, suitable for cost-effective reel-to-reel production, can realize low-cost commercially feasible fiber-based wearable displays in the future.

4.
Sensors (Basel) ; 18(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347732

RESUMO

Characterization of cellular dielectrophoretic (DEP) behaviors, when cells are exposed to an alternating current (AC) electric field of varying frequency, is fundamentally important to many applications using dielectrophoresis. However, to date, that characterization has been performed with monotonically increasing or decreasing frequency, not with successive increases and decreases, even though cells might behave differently with those frequency modulations due to the nonlinear cellular electrodynamic responses reported in previous works. In this report, we present a method to trace the behaviors of numerous cells simultaneously at the single-cell level in a simple, robust manner using dielectrophoretic tweezers-based force spectroscopy. Using this method, the behaviors of more than 150 cells were traced in a single environment at the same time, while a modulated DEP force acted upon them, resulting in characterization of nonlinear DEP cellular behaviors and generation of different cross-over frequencies in living cells by modulating the DEP force. This study demonstrated that living cells can have non-linear di-polarized responses depending on the modulation direction of the applied frequency as well as providing a simple and reliable platform from which to measure a cellular cross-over frequency and characterize its nonlinear property.

5.
Anal Chem ; 88(22): 10867-10875, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27438702

RESUMO

Understanding of the interactions of silver ions (Ag+) with polynucleotides is important not only to detect Ag+ over a wide range of concentrations in a simple, robust, and high-throughput manner but also to investigate the intermolecular interactions of hydrogen and coordinate interactions that are generated due to the interplay of Ag+, hydrogen ions (H+), and polynucleotides since it is critical to prevent adverse environmental effects that may cause DNA damage and develop strategies to treat this damage. Here, we demonstrate a novel approach to simultaneously detect Ag+ satisfying the above requirements and examine the combined intermolecular interactions of Ag+-polycytosine and H+-polycytosine DNA complexes using dielectrophoretic tweezers-based force spectroscopy. For this investigation, we detected Ag+ over a range of concentrations (1 nM to 100 µM) by quantifying the rupture force of the combined interactions and examined the interplay between the three factors (Ag+, H+, and polycytosine) using the same assay for the detection of Ag+. Our study provides a new avenue not only for the detection of heavy metal ions but also for the investigation of heavy metal ions-polynucleotide DNA complexes using the same assay.

6.
Langmuir ; 32(3): 922-7, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26734855

RESUMO

Characterization of the stiffness of multiple particles trapped by tweezers-based force spectroscopy is a key step in building simple, high-throughput, and robust systems that can investigate the molecular interactions in a biological process, but the technology to characterize it in a given environment simultaneously is still lacking. We first characterized the stiffness of multiple particles trapped by dielectrophoretic (DEP) tweezers inside a microfluidic device. In this characterization, we developed a method to measure the thermal fluctuations of the trapped multiple particles with DEP tweezers by varying the heights of the particles in the given environment at the same time. Using the data measured in this controlled environment, we extracted the stiffness of the trapped particles and calculated their force. This study not only provides a simple and high-throughput method to measure the trap stiffness of multiple particles inside a microfluidic device using DEP tweezers but also inspires the application of the trapped multiple particles to investigate the dynamics in molecular interactions.


Assuntos
Dispositivos Lab-On-A-Chip , Pinças Ópticas , Poliestirenos/química , Dióxido de Silício/química , Dureza , Hidroxilação , Tamanho da Partícula , Temperatura
7.
Biosensors (Basel) ; 14(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38785716

RESUMO

Electroporation is pivotal in bioelectrochemistry for cellular manipulation, with prominent applications in drug delivery and cell membrane studies. A comprehensive understanding of pore generation requires an in-depth analysis of the critical pore size and the corresponding energy barrier at the onset of cell rupture. However, many studies have been limited to basic models such as artificial membranes or theoretical simulations. Challenging this paradigm, our study pioneers using a microfluidic electroporation chip array. This tool subjects live breast cancer cell species to a diverse spectrum of alternating current electric field conditions, driving electroporation-induced cell rupture. We conclusively determined the rupture voltages across varying applied voltage loading rates, enabling an unprecedented characterization of electric cell rupture dynamics encompassing critical pore radius and energy barrier. Further bolstering our investigation, we probed cells subjected to cholesterol depletion via methyl-ß-cyclodextrin and revealed a strong correlation with electroporation. This work not only elucidates the dynamics of electric rupture in live cell membranes but also sets a robust foundation for future explorations into the mechanisms and energetics of live cell electroporation.


Assuntos
Membrana Celular , Eletroporação , Humanos , Membrana Celular/metabolismo , Microfluídica , Linhagem Celular Tumoral , beta-Ciclodextrinas , Colesterol , Dispositivos Lab-On-A-Chip , Neoplasias da Mama
8.
Comput Biol Med ; 170: 108011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271838

RESUMO

While the average value measurement approach can successfully analyze and predict the general behavior and biophysical properties of an isogenic cell population, it fails when significant differences among individual cells are generated in the population by intracellular changes such as the cell cycle, or different cellular responses to certain stimuli. Detecting such single-cell differences in a cell population has remained elusive. Here, we describe an easy-to-implement and generalizable platform that measures the dielectrophoretic cross-over frequency of individual cells by decreasing measurement noise with a stochastic method and computing ensemble average statistics. This platform enables multiple, real-time, label-free detection of individual cells with significant dielectric variations over time within an isogenic cell population. Using a stochastic method in combination with the platform, we distinguished cell subpopulations from a mixture of drug-untreated and -treated isogenic cells. Furthermore, we demonstrate that our platform can identify drug-treated isogenic cells with different recovery rates.

9.
Adv Sci (Weinh) ; 9(35): e2204622, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310107

RESUMO

Neonatal jaundice is a very common disease in newborns and can lead to brain damage or death in severe cases. Phototherapy with light-emitting diode (LED) arrays is widely used as the easiest and fastest way to relieve jaundice in newborns, but it has distinct disadvantages such as loss of water in the patient, damage to the retina, and separation from parents. In this paper, a novel light source-based phototherapy for neonatal jaundice is proposed using a textile-based wearable organic light-emitting diode (OLED) platform that can move flexibly and conform to the curvature of the human body. The soft and flexible textile-based blue OLED platform is designed to have a peak wavelength of 470 nm, suitable for jaundice treatment, and shows performance (>20 µW cm-2 nm- 1 ) suitable for intensive jaundice treatment even at low voltage (<4.0 V). The textile-based OLEDs fabricated in this study exhibit an operating reliability of over 100 h and low-temperature operation (<35 °C). The results of an in vitro jaundice treatment test using a large-area blue OLED confirm that the bilirubin level decreases to 12 mg dL-1 with 3 h of OLED irradiation.


Assuntos
Icterícia Neonatal , Icterícia , Dispositivos Eletrônicos Vestíveis , Humanos , Recém-Nascido , Reprodutibilidade dos Testes , Fototerapia/métodos , Icterícia/terapia
10.
Biosens Bioelectron ; 210: 114235, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35483112

RESUMO

Label-free dielectrophoretic force-based surface charge detection has shown great potential for highly sensitive and selective sensing of metal ions and small biomolecules. However, this method suffers from a complex calibration process and measurement signal interference in simultaneous multi-analyte detection, thus creating difficulties in multiplex detection. We have developed a method to overcome these issues based on the optical discrimination of the dielectrophoretic behaviors of multiple microparticle probes considering the surface charge difference before and after self-assembling conjugation. In this report, we demonstrate and characterize this dielectrophoretic force-based surface charge detection method with particle probes functionalized by various biomolecules. This technique achieved an attomolar limit of detection (LOD) for Hg2+ in distilled water and a femtomolar LOD in drinking water using DNA aptamer-functionalized particle probes. More importantly, using two different DNA aptamer-functionalized particle probes for Hg2+ and Ag+, label-free dielectrophoretic multiplex detection of these species in drinking water with a femtomolar and a nanomolar LOD was achieved for the first time.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Água Potável , Mercúrio , Técnicas Biossensoriais/métodos , Limite de Detecção
11.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421154

RESUMO

In recent years, an interesting biomarker called membrane breakdown voltage has been examined using artificial planar lipid bilayers. Even though they have great potential to identify cell electrical phenotyping for distinguishing similar cell lines or cells under different physiological conditions, the biomarker has not been evaluated in the context of living cell electrical phenotyping. Herein, we present a single-cell analysis platform to continuously measure the electric response in a large number of cells in parallel using electric frequency and voltage variables. Using this platform, we measured the direction of cell displacement and transparent cell image alteration as electric polarization of the cell responds to signal modulation, extracting the dielectrophoretic crossover frequency and membrane breakdown voltage for each cell, and utilizing the measurement results in the same spatiotemporal environment. We developed paired parameters using the dielectrophoretic crossover frequency and membrane breakdown voltage for each cell and evaluated the paired parameter efficiency concerning the identification of two different breast cancer cells and cell drug response. Moreover, we showed that the platform was able to identify cell electrical phenotyping, which was generated by subtle changes in cholesterol depletion-induced cell membrane integrity disruption when the paired parameter was used. Our platform introduced in this paper is extremely useful for facilitating more accurate and efficient evaluation of cell electrical phenotyping in a variety of applications, such as cell biology and drug discovery.


Assuntos
Bicamadas Lipídicas , Análise de Célula Única , Eletricidade , Membrana Celular
12.
Comput Methods Programs Biomed ; 195: 105662, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32712504

RESUMO

BACKGROUND AND OBJECTIVE: The dielectrophoresis (DEP) technique is increasingly being recognised as a potentially valuable tool for non-contact manipulation of numerous cells as well as for biological single cell analysis with non-invasive characterisation of a cell's electrical properties. Several studies have attempted to track multiple cells to characterise their cellular DEP mobility. However, they encountered difficulties in simultaneously tracking the movement of a large number of individual cells in a bright-field image sequence because of interference from the background electrode pattern. Consequently, this present study aims to develop an automatic system for imaging-based characterisation of cellular DEP mobility, which enables the simultaneous tracking of several hundred of cells inside a microfluidic device. METHODS: The proposed method for segmentation and tracking of cells consists of two main stages: pre-processing and particle centre localisation. In the pre-processing stage, background subtraction and contrast enhancement were performed to distinguish the cell region from the background image. In the particle centre localisation stage, the unmarked cell was automatically detected via graph-cut algorithm-based K-means clustering. RESULTS: Our algorithm enabled segmentation and tracking of numerous Michigan Cancer Foundation-7 (MCF-7) cell trajectories while the DEP force was oscillated between positive and negative. The cell tracking accuracy and cell count capability was at least 90% of the total number of cells with the newly developed algorithm. In addition, the cross-over frequency was measured by analysing the segmented and tracked trajectory data of the cellular movements caused by the positive and negative DEP force. The measured cross-over frequency was compared with previous results. The multi-cellular movements investigation based on the measured cross-over frequency was repeated until the viability of cells was unchanged in the same environment as in a microfluidic device. The results were statistically consistent, indicating that the developed algorithm was reliable for the investigation of DEP cellular mobility. CONCLUSION: This study developed a powerful platform to simultaneously measure the DEP-induced trajectories of numerous cells, and to investigate in a robust, efficient, and accurate manner the DEP properties at both the single cell and cell ensemble level.


Assuntos
Algoritmos , Dispositivos Lab-On-A-Chip , Movimento Celular , Eletrodos , Eletroforese
13.
Adv Mater ; 32(5): e1903488, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31483540

RESUMO

Advances in material science and nanotechnology have fostered the miniaturization of devices. Over the past two decades, the form-factor of these devices has evolved from 3D rigid, volumetric devices through 2D film-based flexible electronics, finally to 1D fiber electronics (fibertronics). In this regard, fibertronic strategies toward wearable applications (e.g., electronic textiles (e-textiles)) have attracted considerable attention thanks to their capability to impart various functions into textiles with retaining textiles' intrinsic properties as well as imperceptible irritation by foreign matters. In recent years, extensive research has been carried out to develop various functional devices in the fiber form. Among various features, lighting and display features are the highly desirable functions in wearable electronics. This article discusses the recent progress of materials, architectural designs, and new fabrication technologies of fiber-shaped lighting devices and the current challenges corresponding to each device's operating mechanism. Moreover, opportunities and applications that the revolutionary convergence between the state-of-the-art fibertronic technology and age-long textile industry will bring in the future are also discussed.

14.
J Phys Chem Lett ; 11(17): 7197-7203, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32813536

RESUMO

Investigation of the dielectric properties of cell membranes plays an important role in understanding the biological activities that sustain cellular life and realize cellular functionalities. Herein, the variable dielectric polarization characteristics of cell membranes are reported. In controlling the dielectric polarization of a cell using dielectrophoresis force spectroscopy, different cellular crossover frequencies were observed by modulating both the direction and sweep rate of the frequency. The crossover frequencies were used for the extraction of the variable capacitance, which is involved in the dielectric polarization across the cell membranes. In addition, this variable phenomenon was investigated by examining cells whose membranes were cholesterol-depleted with methyl-ß-cyclodextrin, which verified a strong correlation between the variable dielectric polarization characteristics and membrane composition changes. This study presented the dielectric polarization properties in live cells' membranes that can be modified by the regulation of external stimuli and provided a powerful platform to explore cellular membrane dielectric polarization.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular , Impedância Elétrica , Humanos , Células MCF-7 , beta-Ciclodextrinas/farmacologia
15.
Light Sci Appl ; 8: 114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31839934

RESUMO

Free-form optoelectronic devices can provide hyper-connectivity over space and time. However, most conformable optoelectronic devices can only be fabricated on flat polymeric materials using low-temperature processes, limiting their application and forms. This paper presents free-form optoelectronic devices that are not dependent on the shape or material. For medical applications, the transferable OLED (10 µm) is formed in a sandwich structure with an ultra-thin transferable barrier (4.8 µm). The results showed that the fabricated sandwich-structure transferable OLED (STOLED) exhibit the same high-efficiency performance on cylindrical-shaped materials and on materials such as textile and paper. Because the neutral axis is freely adjustable using the sandwich structure, the textile-based OLED achieved both folding reliability and washing reliability, as well as a long operating life (>150 h). When keratinocytes were irradiated with red STOLED light, cell proliferation and cell migration increased by 26 and 32%, respectively. In the skin equivalent model, the epidermis thickness was increased by 39%; additionally, in organ culture, not only was the skin area increased by 14%, but also, re-epithelialization was highly induced. Based on the results, the STOLED is expected to be applicable in various wearable and disposable photomedical devices.

16.
Sci Rep ; 8(1): 1737, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379026

RESUMO

Here, we report a new concept of both the adhesive manner and material, named "adhesive leaf (AL)," based on the leaf of the plant Heteropanax fragrans. The treatment of the corona discharge on the leaf surface can cause the nano-/microdestruction of the leaf epidermis, resulting in an outward release of sap. The glucose-containing sap provided the AL with a unique ability to stick to various substrates such as steel, polypropylene, and glass. Moreover, we reveal that the AL adhesion strength depends on the AL size, as well as the corona-discharge intensity. Conventional adhesives, such as glue and bond, lose their adhesive property and leave dirty residues upon the removal of the attached material. Unlike the conventional methods, the AL is advantageous as it can be repeatedly attached and detached thoroughly until the sap liquid is exhausted; its adhesive ability is maintained for at least three weeks at room temperature. Our findings shed light on a new concept of a biodegradable adhesive material that is created by a simple surface treatment.


Assuntos
Adesivos/metabolismo , Araliaceae/metabolismo , Produtos Biológicos/metabolismo , Folhas de Planta/metabolismo , Adesivos/química , Produtos Biológicos/química
17.
ACS Appl Mater Interfaces ; 9(50): 43983-43992, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29185704

RESUMO

In this study, a structurally and materially designed thin-film encapsulation is proposed to guarantee the reliability of transparent, flexible displays by significantly improving their barrier properties, mechanical stability, and environmental reliability, all of which are essential for organic light-emitting diode (OLED) encapsulation. We fabricated a bioinspired, nacre-like ZnO/Al2O3/MgO laminate structure (ZAM) using atomic layer deposition for the microcrack toughening effect. The ZAM film was formed with intentional voids and defects through the formation of a quasi-perfect sublayer, rather than the simple fabrication of nanolaminate structures. The 240 nm thick ZAM-based multibarrier (ZAM-TFE) with a compressively strained organic layer demonstrated an optical transmittance of 91.35% in the visible range, an extremely low water vapor transmission rate of 2.06 × 10-6 g/m2/day, a mechanical stability enduring a strain close to 1%, and a residual stress close to 0, showing significant improvement of key TFE properties in comparison to an Al2O3-based multibarrier. In addition, ZAM-TFE demonstrated superior environmental resistance without degradation of barrier properties in a severe environment of 85 °C and 90% relative humidity (RH). Thus, our structurally and materially designed ZAM film has been well optimized in terms of its applicability as a gas diffusion barrier as well as in terms of its mechanical and environmental reliability. Finally, we confirmed the feasibility of the ZAM-TFE through application in OLEDs. The low-temperature ZAM-TFE technology showed great potential to provide a highly robust and flexible TFE of TFOLEDs.

18.
ACS Appl Mater Interfaces ; 9(32): 27062-27072, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28718293

RESUMO

In this study, a new and efficient dielectric-metal-dielectric-based thin-film encapsulation (DMD-TFE) with an inserted Ag thin film is proposed to guarantee the reliability of flexible displays by improving the barrier properties, mechanical flexibility, and heat dissipation, which are considered to be essential requirements for organic light-emitting diode (OLED) encapsulation. The DMD-TFE, which is composed of Al2O3, Ag, and a silica nanoparticle-embedded sol-gel hybrid nanocomposite, shows a water vapor transmission rate of 8.70 × 10-6 g/m2/day and good mechanical reliability at a bending radius of 30 mm, corresponding to 0.41% strain for 1000 bending cycles. The electrical performance of a thin-film encapsulated phosphorescent organic light-emitting diode (PHOLED) was identical to that of a glass-lid encapsulated PHOLED. The operational lifetimes of the thin-film encapsulated and glass-lid encapsulated PHOLEDs are 832 and 754 h, respectively. After 80 days, the thin-film encapsulated PHOLED did not show performance degradation or dark spots on the cell image in a shelf-lifetime test. Finally, the difference in lifetime of the OLED devices in relation to the presence and thickness of a Ag film was analyzed by applying various TFE structures to fluorescent organic light-emitting diodes (FOLEDs) that could generate high amounts of heat. To demonstrate the difference in heat dissipation effect among the TFE structures, the saturated temperatures of the encapsulated FOLEDs were measured from the back side surface of the glass substrate, and were found to be 67.78, 65.12, 60.44, and 39.67 °C after all encapsulated FOLEDs were operated at an initial luminance of 10 000 cd/m2 for sufficient heat generation. Furthermore, the operational lifetime tests of the encapsulated FOLED devices showed results that were consistent with the measurements of real-time temperature profiles taken with an infrared camera. A multifunctional hybrid thin-film encapsulation based on a dielectric-metal-dielectric structure was thus effectively designed considering the transmittance, gas-permeation barrier properties, flexibility, and heat dissipation effect by exploiting the advantages of each separate layer.

19.
Sci Rep ; 7(1): 6424, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743919

RESUMO

Recently, the role of clothing has evolved from merely body protection, maintaining the body temperature, and fashion, to advanced functions such as various types of information delivery, communication, and even augmented reality. With a wireless internet connection, the integration of circuits and sensors, and a portable power supply, clothes become a novel electronic device. Currently, the information display is the most intuitive interface using visualized communication methods and the simultaneous concurrent processing of inputs and outputs between a wearer and functional clothes. The important aspect in this case is to maintain the characteristic softness of the fabrics even when electronic devices are added to the flexible clothes. Silicone-based light-emitting diode (LED) jackets, shirts, and stage costumes have started to appear, but the intrinsic stiffness of inorganic semiconductors causes wearers to feel discomfort; thus, it is difficult to use such devices for everyday purposes. To address this problem, a method of fabricating a thin and flexible emitting fabric utilizing organic light-emitting diodes (OLEDs) was developed in this work. Its flexibility was evaluated, and an analysis of its mechanical bending characteristics and tests of its long-term reliability were carried out.

20.
ACS Nano ; 10(4): 4011-9, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27007455

RESUMO

The direct quantification of weak intermolecular binding interactions is very important for many applications in biology and medicine. Techniques that can be used to investigate such interactions under a controlled environment, while varying different parameters such as loading rate, pulling direction, rupture event measurements, and the use of different functionalized probes, are still lacking. Herein, we demonstrate a biaxial dielectrophoresis force spectroscopy (BDFS) method that can be used to investigate weak unbinding events in a high-throughput manner under controlled environments and by varying the pulling direction (i.e., transverse and/or vertical axes) as well as the loading rate. With the BDFS system, we can quantitatively analyze binding interactions related to hydrogen bonding or ionic attractions between functionalized microbeads and a surface within a microfluidic device. Our BDFS system allowed for the characterization of the number of bonds involved in an interaction, bond affinity, kinetic rates, and energy barrier heights and widths from different regimes of the energy landscape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA