Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(23): e2100910, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938152

RESUMO

Liquid crystal elastomers (LCEs) are broadly recognized as programmable actuating materials that are responsive to external stimuli, typically heat or light. Yet, soft LCEs that respond to changes in environmental humidity are not reported, except a few examples based on rigid liquid crystal networks with limited processing. Herein, a new class of highly deformable hygroscopic LCE actuators that can be prepared by versatile processing methods, including surface alignment as well as 3D printing is presented. The dimethylamino-functionalized LCE is prepared by the aza-Michael addition reaction between a reactive LC monomer and N,N'-dimethylethylenediamine as a chain extender, followed by photopolymerization. The humidity-responsive properties are introduced by activating one of the LCE surfaces with an acidic solution, which generates cations on the surface and provides asymmetric hydrophilicity to the LCE. The resulting humidity-responsive LCE undergoes programmed and reversible hygroscopic actuation, and its shape transformation can be directed by the cut angle with respect to a nematic director or by localizing activation regions in the LCE. Most importantly, various hygroscopic LCE actuators, including (porous) bilayers, a flower, a concentric square array, and a soft gripper, are successfully fabricated by using LC inks in UV-assisted direct-ink-writing-based 3D printing.

2.
Soft Matter ; 16(11): 2695-2705, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32057062

RESUMO

Liquid crystal elastomers (LCEs) are a unique class of active materials with the largest known reversible shape transformation in the solid state. The shape change of LCEs is directed by programming their molecular orientation, and therefore, several strategies to control LC alignment have been developed. Although mechanical alignment coupled with a two-step crosslinking is commonly adopted for uniaxially-aligned monodomain LCE synthesis, the fabrication of 3D-shaped LCEs at the macro- and microscale has been rarely accomplished. Here, we report a facile processing method for fabricating 2D and 3D-shaped LCEs at the macro- and microscales at room temperature by mechanically programming (i.e., stretching, pressing, embossing and UV-imprinting) the polydomain LCE, and subsequent photocrosslinking. The programmed LCEs exhibited a reversible shape change when exposed to thermal and chemical stimuli. Besides the programmed shape changes, the actuation strain can also be preprogrammed by adjusting the extent of elongation of a polydomain LCE. Furthermore, the LCE micropillar arrays prepared by UV-imprinting displayed a substantial change in pillar height in a reversible manner during thermal actuation. Our convenient method for fabricating reversible 2D and 3D-shaped LCEs from commercially available materials may expedite the potential applications of LCEs in actuators, soft robots, smart coatings, tunable optics and medicine.

3.
Water Res ; 231: 119649, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702024

RESUMO

Membrane distillation (MD) transfers heat and mass simultaneously through a hydrophobic membrane. Hence, it is sensitive to both concentration and temperature polarisation (CP and TP) effects. In this study, we fabricated feed spacers to improve MD efficiency by alleviating the polarisation effects. First, a 3D printed spacer design was optimised to show superior performance amongst the others tested. Then, to further enhance spacer performance, we incorporated highly thermally stable carbon nanofillers, including carbon nanotubes (CNT) and graphene, in the fabrication of filaments for 3D printing. All the fabricated spacers had a degree of engineered multi-scale roughness, which was relatively high compared to that of the polylactic acid (PLA) spacer (control). The use of nanomaterial-incorporated spacers increased the mean permeate flux significantly compared to the PLA spacer (27.1 L/m2h (LMH)): a 43% and 75% increase when using the 1% graphene-incorporated spacer (38.9 LMH) and 2% CNT incorporated spacer (47.5 LMH), respectively. This could be attributed to the locally enhanced turbulence owing to the multi-scale roughness formed on the spacer, which further increased the vaporisation rate through the membrane. Interestingly, only the CNT-embedded spacer markedly reduced the ion permeation through the membrane, which may be due to the effective reduction of CP. This further decreased with increasing CNT concentration, confirming that the CNT spacer can simultaneously reduce the CP and TP effects in the MD process. Finally, we successfully proved that the multi-scale roughness of the spacer surface induces micromixing near the membrane walls, which can improve the MD performance via computational fluid dynamics.


Assuntos
Grafite , Nanotubos de Carbono , Purificação da Água , Destilação , Membranas Artificiais , Poliésteres , Impressão Tridimensional
4.
ACS Appl Mater Interfaces ; 14(28): 32486-32496, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35792581

RESUMO

The network structures of liquid crystal elastomers (LCEs) are crucial to impart rubbery behavior to LCEs and enable reversible actuation. Most LCEs developed to date are covalently linked, implying that the cross-links are fixed at a particular position. Herein, we report a new class of LCEs integrating polyrotaxanes (PRs) as slidable cross-links (PR-LCEs). Interestingly, the incorporation of a low loading (0.3-2.0 wt %) of the PR cross-linkers to the LCE causes a significant impact on various properties of the resulting PR-LCEs due to the pulley effect. The optimum PR loading is determined to be 0.5 wt %, at which point the toughness and damping behavior are maximized. The robust mechanical properties of the PR-LCE offers a superior actuation performance to that of the pristine LCE along with an excellent quadruple shape-memory effect. Furthermore, the incorporation of PR is useful to enhance the efficiency of shape-memory-assisted self-healing when heating above the nematic-isotropic transition.

5.
Nat Nanotechnol ; 17(11): 1198-1205, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36302962

RESUMO

Artificial muscles are indispensable components for next-generation robotics capable of mimicking sophisticated movements of living systems. However, an optimal combination of actuation parameters, including strain, stress, energy density and high mechanical strength, is required for their practical applications. Here we report mammalian-skeletal-muscle-inspired single fibres and bundles with large and strong contractive actuation. The use of exfoliated graphene fillers within a uniaxial liquid crystalline matrix enables photothermal actuation with large work capacity and rapid response. Moreover, the reversible percolation of graphene fillers induced by the thermodynamic conformational transition of mesoscale structures can be in situ monitored by electrical switching. Such a dynamic percolation behaviour effectively strengthens the mechanical properties of the actuator fibres, particularly in the contracted actuation state, enabling mammalian-muscle-like reliable reversible actuation. Taking advantage of a mechanically compliant fibre structure, smart actuators are readily integrated into strong bundles as well as high-power soft robotics with light-driven remote control.


Assuntos
Grafite , Robótica , Animais , Humanos , Grafite/química , Mamíferos
6.
Materials (Basel) ; 13(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664370

RESUMO

Among the various types of shape changing materials, liquid crystal elastomers (LCEs) have received significant attention as they can undergo programmed and reversible shape transformations. The molecular engineering of LCEs is the key to manipulating their phase transition, mechanical properties, and actuation performance. In this work, LCEs containing three different types of butyl groups (n-, iso-, and sec-butyl) in the side chain were synthesized, and the effect of isomeric amine chain extenders on the thermal, mechanical, and actuation properties of the resulting LCEs was investigated. Because of the considerably low reactivity of the sec-butyl group toward the diacrylate in the LC monomer, only a densely crosslinked LCE was synthesized. Most interestingly, the mechanical properties, actuation temperature, and blocking stress of the LCEs comprising isobutyl groups were higher than those of the LCEs comprising n-butyl groups. This difference was attributed to the presence of branches in the LCEs with isobutyl groups, which resulted in a tighter molecular packing and reduced the free volume. Our results suggest a facile and effective method for synthesizing LCEs with tailored mechanical and actuation properties by the choice of chain extenders, which may advance the development of soft actuators for a variety of applications in aerospace, medicine, and optics.

7.
Adv Sci (Weinh) ; 7(24): 2002134, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344125

RESUMO

Despite many efforts in structuring surfaces using mechanical instabilities, the practical application of these structures to advanced devices remains a challenging task due to the limited capability to control the local morphology. A platform that programs the orientation of mechanically anisotropic molecules is demonstrated; thus, the surface wrinkles, promoted by such instabilities, can be patterned in the desired manner. The optics based on a spatial light modulator assembles wrinkle pixels of a notably small dimension over a large area at fast fabrication speed. Furthermore, these pixelated wrinkles can be formed on curved geometries. The pixelated wrinkles can record images, which are naturally invisible, by mapping the gray level to the orientation of wrinkles. They can retrieve those images using the patterned optical phase retardation generated under the crossed polarizers. As a result, it is shown that the pixelated wrinkles enable new applications in optics such as image storage, informative labeling, and anti-counterfeiting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA