Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 274: 116213, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493702

RESUMO

Antibacterial films have gained attention since the outbreak of the COVID-19 pandemic; however, the impact of metals contained in antibacterial films on human safety have not been sufficiently investigated. This study reports on the important features that must be considered when assessing the bioaccessibility of Ag, Cu, and Zn in antibacterial films. Specifically, the effects of the artificial sweat component (i.e., amino acid and pH), surface weathering of antibacterial films, wipe sampling, and sebum were carefully examined. Our findings suggest that amino acids greatly affect bioaccessibility as amino acids act as ligands to facilitate metal ion leaching. In addition, constant exposure to ultraviolet C causes the film surface to oxidize, which significantly increases metal bioaccessibility due to the electrostatic repulsion between metal oxides and organic substrates. The presence of sebum in artificial sweat and physical damage to the film surface had no significant effects. Furthermore, the wipe sampling used to mimic the realistic dermal contact suggests the feasibility of applying this method for the assessment of bioaccessibility of metals in antibacterial films. The method offers significant advantages for evaluating the human safety aspects of skin contact with consumer products in future research.


Assuntos
Metais Pesados , Pandemias , Humanos , Metais/análise , Pele/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Aminoácidos/metabolismo , Metais Pesados/análise , Monitoramento Ambiental/métodos
2.
Chemosphere ; 364: 143051, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127191

RESUMO

In this study, acid-modified activated carbon fibers (ACF-Ps) were synthesized by phosphorylation. Three different types of ACF-based adsorbents functionalized with PO43-, P2O74-, or P3O105- ions, namely, ACF-P1, ACF-P2, and ACF-P3, were prepared by phosphorylating ACF with trisodium phosphate (Na3PO4), sodium dihydrogen pyrophosphate (Na2H2P2O5), and sodium tripolyphosphate (Na5P3O10), respectively, and utilized as adsorbents to remove cesium ions (Cs+) from aqueous solutions. Among the tested adsorbents, ACF-P3 exhibited the highest Cs+ adsorption capacity of 37.59 mg g-1 at 25 °C and pH 7 which is higher than that of ACF (5.634 mg g-1), ACF-P1 (19.38 mg g-1), and ACF-P2 (30.12 mg g-1) under the same experimental conditions. More importantly, the Cs+ removal efficiencies of ACF-P3 (82.90%), ACF-P2 (66.2%), ACF-P1 (34.2%) were 29.3-, 23.4-, and 12.11-fold higher than that of un-treated ACF (2.83%). The results suggested that the phosphorylation with Na5P3O10 is highly suitable for Cs+ adsorption which effectively functionalizes ACF with a greater number of phosphate functional groups. Adsorption and kinetic data well-fitted the Langmuir isotherm and pseudo-second-order model, respectively, which indicated the monolayer adsorption of Cs+ onto ACF-P1, ACF-P2, and ACF-P3 which were largely controlled by chemisorption. Overall, phosphoric acids containing different phosphate-based polyanions (PO43-, P2O74-, or P3O105-) enriched -OH and/or -COOH surface functional groups of ACF in addition to P-containing surface groups (PO, C-P-O, C-O-P, and P-O) and facilitated the Cs+ adsorption through surface complexation and electrostatic interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA