Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 27(18): 24900-24913, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510371

RESUMO

In this study, a perovskite is integrated with an ultra-thin Cu/Cu2O (CCO) composite film, a transparent material with high mobility, to achieve a double-side and low-voltage operable photodetector. Compared to photodetectors that utilize metal electrode with perovskite, the use of CCO significantly enhances the photocurrent (from nA up to mA). It acts as a large-scale hole transport layer. The photodetector exhibits high responsivities of 6.79 AW-1 [illuminated via the fluorine-doped tin oxide (FTO) side] and 10.23 AW-1 (illuminated via CCO side). The detectivities obtained at both illuminated sides are as high as over 1011 Jones. Additionally, the Cu/Cu2O-covered perovskite effectively prevents the reaction of perovskite in the interface. This work reveals that the perovskite/CCO heterojunction photodetector can be considered a promising candidate for applications in bifacial-illuminated and flexible/wearable optoelectronic technologies.

2.
Nano Lett ; 13(4): 1422-8, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23432577

RESUMO

A 3D trenched-structure metal-insulator-metal (MIM) nanocapacitor array with an ultrahigh equivalent planar capacitance (EPC) of ~300 µF cm(-2) is demonstrated. Zinc oxide (ZnO) and aluminum oxide (Al2O3) bilayer dielectric is deposited on 1 µm high biomimetic silicon nanotip (SiNT) substrate using the atomic layer deposition method. The large EPC is achieved by utilizing the large surface area of the densely packed SiNT (!5 × 10(10) cm(-2)) coated conformally with an ultrahigh dielectric constant of ZnO. The EPC value is 30 times higher than those previously reported in metal-insulator-metal or metal-insulator-semiconductor nanocapacitors using similar porosity dimensions of the support materials.


Assuntos
Materiais Biomiméticos , Capacitância Elétrica , Óxido de Zinco/química , Metais/química , Nanoestruturas/química , Tamanho da Partícula , Porosidade , Silício/química
3.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296876

RESUMO

The spin-to-charge conversion in Permalloy (Py)/Cu/Bi2Se3 is tunable by changing the Cu layer thickness. The conversion rate was studied using the spin pumping technique. The inverse Edelstein effect (IEE) length λIEE is found to increase up to ~2.7 nm when a 7 nm Cu layer is introduced. Interestingly, the maximized λIEE is obtained when the effective spin-mixing conductance (and thus Js) is decreased due to Cu insertion. The monotonic increase in λIEE with decreasing Js suggests that the IEE relaxation time (τ) is enhanced due to the additional tunnelling barrier (Cu layer) that limits the interfacial transmission rate. The results demonstrate the importance of interface engineering in the magnetic heterostructure of Py/topological insulators (TIs), the key factor in optimizing spin-to-charge conversion efficiency.

4.
Nanotechnology ; 22(12): 125701, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21317486

RESUMO

An on-chip approach for fabricating ferromagnetic/semiconductor-nanotip heterojunctions is demonstrated. The high-density array of Si nanotips (SiNTs) is employed as a template for depositing La(0.7)Sr(0.3)MnO(3) (LSMO) rods with a pulsed-laser deposition method. Compared with the planar LSMO/Si thin film, the heterojunction shows a large enhancement of room temperature magnetoresistance (MR) ratio up to 20% under 0.5 T and a bias current of 20 µA. The MR ratio is found to be tunable, which increases with increasing external bias and the aspect ratios of the nanotips. Electric-field-induced metallization, in conjunction with nanotip geometry, is proposed to be the origin for the giant MR ratio.

5.
Sci Rep ; 8(1): 108, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311703

RESUMO

In this study, we integrated bilayer structure of covered Pt on nickel zinc ferrite (NZFO) and CoFe/Pt/NZFO tri-layer structure by pulsed laser deposition system for a spin Hall magnetoresistance (SMR) study. In the bilayer structure, the angular-dependent magnetoresistance (MR) results indicate that Pt/NZFO has a well-defined SMR behavior. Moreover, the spin Hall angle and the spin diffusion length, which were 0.0648 and 1.31 nm, respectively, can be fitted by changing the Pt thickness in the longitudinal SMR function. Particularly, the MR ratio of the bilayer structure (Pt/NZFO) has the highest changing ratio (about 0.135%), compared to the prototype structure Pt/Y3Fe5O12 (YIG) because the NZFO has higher magnetization. Meanwhile, the tri-layer samples (CoFe/Pt/NZFO) indicate that the MR behavior is related with CoFe thickness as revealed in angular-dependent MR measurement. Additionally, comparison between the tri-layer structure with Pt/NZFO and CoFe/Pt bilayer systems suggests that the SMR ratio can be enhanced by more than 70%, indicating that additional spin current should be injected into Pt layer.

6.
RSC Adv ; 8(14): 7785-7791, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539151

RESUMO

The introduction of ferromagnetism at the surface of a topological insulator (TI) produces fascinating spin-charge phenomena. It has been assumed that these fascinating effects are associated with a homogeneous ferromagnetic (FM) layer possessing a single type of magnetic phase. However, we obtained phase separation within the FM layer of a Ni80Fe20/Bi2Se3 heterostructure. This phase separation was caused by the diffusion of Ni into Bi2Se3, forming a ternary magnetic phase of Ni:Bi2Se3. The inward diffusion of Ni led to the formation of an FeSe phase outward, transforming the original Ni80Fe20/Bi2Se3 into a sandwich structure comprising FeSe/Ni:Bi2Se3/Bi2Se3 with dual-phase magnetic characteristics similar to that driven by the proximity effect. Such a phenomenon might have been overlooked in previous studies with a strong focus on the proximity effect. X-ray magnetic spectroscopy revealed that FeSe and Ni:Bi2Se3 possess horizontal and perpendicular magnetic anisotropy, respectively. The overall magnetic order of the heterostructure can be easily tuned by adjusting the thickness of the Bi2Se3 as it compromises the magnetic orders of the two magnetic phases. This discovery is essential to the quantification of spin-charge phenomena in similar material combinations where the FM layer is composed of multiple elements.

7.
Sci Rep ; 7(1): 2422, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28546637

RESUMO

In this study, we investigate the proximity effect in topological insulator (TI) and magnetic insulator bilayer system. (Bi1-xSbx)2Se3/CoFe2O4 (CFO) heterostructure was fabricated using molecular beam epitaxy and pulsed laser deposition system respectively. As revealed from the magnetoresistance measurement, the weak anti-localization (WAL) is strongly suppressed by proximity effect in (Bi1-xSbx)2Se3/CFO interface. Modified Hikama-Larkin-Nagaoka equation was used to fit the WAL results so that the size of surface state gap can be extracted successfully. The temperature-dependent resistance of the heterostructures at small and large perpendicular magnetic fields were also measured and analyzed. The results indicate that the surface band gap can be induced in TI and continuously enlarged up to 9 T, indicating the gradual alignment of the magnetic moment in CFO under perpendicular magnetic field. The approaches and results accommodated in this work show that CFO can effectively magnetize (Bi1-xSbx)2Se3 and the heterostructures are promising for TI-based spintronic device applications.

8.
ACS Appl Mater Interfaces ; 9(14): 12859-12864, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28318226

RESUMO

Ultrathin three-dimensional topological insulator films are promising for use in field effect devices. (Bi1-xSbx)2Se3 ultrathin films were fabricated on SrTiO3 substrate, where large resistance changes of ∼25 000% could be achieved using the back gate voltage. We suggest that the large ON/OFF ratio was caused by the combined effect of Sb-doping and the reduction of film thickness down to the ultrathin regime. The crossover of different quantum transport under an electric field may form the basis for topological insulators (TI)-based spin transistors with large ON/OFF ratios in the future.

9.
ACS Appl Mater Interfaces ; 7(8): 4616-22, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25668597

RESUMO

Controlled dispersion of single-walled carbon nanotubes (SWCNTs) in common solvents is a challenging issue, especially for the rising need of low cost flexible transparent conducting films (TCFs). Utilizing conductive polymer as surfactant to facilitate SWCNTs solubility is the most successful pragmatic approach to such problem. Here, we show that dispersion of SWCNT with polymer significantly relies on the length of polymer side groups, which not only influences the diameter distribution of SWCNTs in solution, also eventually affects their effective TCF performance. Surfactants with longer side groups covering larger nanotube surface area could induce adequate steric effect to stabilize the wrapped SWCNTs against the nonspecific aggregation, as discerned by the optical and microscopic measurements, also evidenced from the resultant higher electrokinetic potential. This approach demonstrates a facile route to fabricate large-area SWCNTs-TCFs exhibiting high transmittance and high conductivity, with considerable uniformity over 10 cm × 10 cm.

10.
ACS Appl Mater Interfaces ; 7(12): 6683-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25769080

RESUMO

In this study, we investigate the effects of fluorinated poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) buffer layer on the performance of polymer photovoltaic cells. We demonstrate for the first time, the deterioration of the device performance can be effectively mended by modifying the interface between the active layer and buffer layer with heptadecafluoro-1,1,2,2-tetra-hydro-decyl trimethoxysilane (PFDS) and perfluorononane. Device performance shows a substantial enhancement of short-circuit current from 7.90 to 9.39 mA/cm(2) and fill factor from 27% to 53%. The overall device efficiency was improved from 0.98% to 3.12% for PFDS modified device. The mechanism of S-shape curing is also discussed. In addition, the stability of modified devices shows significant improvement than those without modification. The efficiency of the modified devices retains about half (1.88%) of its initial efficiency (4.1%) after 30 d compared to the unmodified ones (0.61%), under air atmosphere.

11.
Nanoscale ; 4(12): 3660-4, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22614883

RESUMO

We report the enhanced electrical conductivity properties of single gold-peapodded amorphous silica nanowires synthesized using microwave plasma enhanced chemical vapor deposition. Dark conductivity of the gold-peapodded silica nanowires can be adjusted by controlling the number of incorporated metal nanoparticles. The temperature-dependent conductivity measurement reveals that the band tail hopping mechanism dominates the electron transport in the gold-peapodded silica nanowires. The high conductivity in the nano-peapodded nanowires with more embedded gold-nanoparticles can be explained by the higher density of hopping states and shorter hopping distance. These Au-embedded amorphous silica nanowires have provided a new approach to enhance not only the electron conduction, but also the chemical-sensor response/sensitivity.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanofios/química , Dióxido de Silício/química , Condutividade Elétrica , Semicondutores , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA