Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Vet Parasitol ; 330: 110240, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959671

RESUMO

Theileriosis caused by Theileria parva infections is responsible for high cattle mortalities in Zambia. Although infected buffalo are a risk to cattle, the characterization of T. parva parasites occurring in this host in Zambia has not been reported. Furthermore, considering the advances in the development of a p67 subunit vaccine, the knowledge of p67 genetic and antigenic diversity in both cattle and buffalo associated T. parva is crucial. Therefore, blood samples from buffalo (n=43) from Central, Eastern and Southern provinces, and cattle (n=834) from Central, Copperbelt, Eastern, Lusaka, and Southern provinces, were tested for T. parva infection and the parasites characterized by sequencing the gene encoding the p67 antigen. About 76.7 % of buffalo and 19.3 % of cattle samples were PCR positive for T. parva. Three of the four known p67 allele types (1, 2 and 3) were identified in parasites from buffalo, of which two (allele types 2 and 3) are associated with T. parva parasites responsible for Corridor disease. Only allele type 1, associated with East Coast fever, was identified from cattle samples, consistent with previous reports from Zambia. Phylogenetic analysis revealed segregation between allele type 1 sequences from cattle and buffalo samples as they grouped separately within the same sub-clade. The high occurrence of T. parva infection in buffalo samples investigated demonstrates the risk of Corridor disease infection, or even outbreaks, should naïve cattle co-graze with infected buffalo in the presence of the tick vector. In view of a subunit vaccine, the antigenic diversity in buffalo associated T. parva should be considered to ensure broad protection. The current disease control measures in Zambia may require re-evaluation to ensure that cattle are protected against buffalo-derived T. parva infections. Parasite stocks used in 'infection and treatment' immunization in Zambia, have not been evaluated for protection against buffalo-derived T. parva parasites currently circulating in the buffalo population.


Assuntos
Alelos , Antígenos de Protozoários , Búfalos , Theileria parva , Theileriose , Animais , Búfalos/parasitologia , Theileria parva/genética , Theileria parva/imunologia , Theileriose/parasitologia , Theileriose/epidemiologia , Zâmbia/epidemiologia , Bovinos , Antígenos de Protozoários/genética , Filogenia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/epidemiologia , Proteínas de Protozoários
2.
Ticks Tick Borne Dis ; 14(2): 102084, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36427476

RESUMO

Babesia bovis is a causal agent of bovine babesiosis, a disease which leads to mortality and morbidity and impacts the cattle industry worldwide. We amplified, cloned and sequenced the B. bovis merozoite surface antigen-2b (msa-2b) gene (∼940 bp) and the near full-length 18S rRNA gene (∼1600 bp) from cattle samples from South Africa and Mozambique to determine sequence variation between B. bovis parasites in the region. A TaqMan quantitative real-time PCR (qPCR) assay (18S rRNA gene) was optimised for the detection of B. bovis and estimation of parasitaemia in field samples from cattle from southern Africa. Phylogenetic analysis grouped the Msa-2b sequences in six clades and these were 59.7 to 99.6% identical to reference sequences. Sequence variation amongst B. bovis 18S rRNA sequences was found at 2 to 36 positions, and the sequences were 97 to 99% identical to published sequences. Mismatches between the B. bovis 18S rRNA sequences and a previously published qPCR forward primer (BoF) were observed; therefore, we developed a new forward primer (BoF2), and optimised the qPCR assay. Six 10-fold dilution series of B. bovis infected erythrocytes (2 × 108 to 2 × 103 infected red blood cells [iRBC]/ml) were analysed in triplicate in each of six separate qPCR runs, to determine the efficiency of the assay. The qPCR assay amplified the B. bovis 18S rRNA gene with 92.0 to 94.9% efficiency. The detection limit of the qPCR assay was approximately 6 iRBCs/µl. The performance of the optimised assay to diagnose B. bovis in field samples was assessed by testing DNA from 222 field samples of cattle from South Africa and Mozambique using three methods: the optimised qPCR assay, the reverse line blot (RLB) hybridisation assay, and the previously published qPCR assay. The detection rate of B. bovis using the optimised qPCR assay (31.1%, 69/222) was significantly higher (p<0.001) than both that using RLB (20.7%, 46/222) and the previously published qPCR assay (5.4%; 12/222). The B. bovis parasitaemia in samples from infected cattle ranged from 6 iRBCs/µl to 101,852 iRBCs/µl of blood. Our study revealed marked sequence variation between B. bovis parasites from southern Africa. The optimised qPCR assay will be useful in epidemiological studies and clinical diagnosis of B. bovis in southern Africa, and can be used to determine parasitaemia and potential carrier status in cattle populations, which is essential in the control of babesiosis.


Assuntos
Babesia bovis , Babesiose , Doenças dos Bovinos , Animais , Bovinos , Babesia bovis/genética , Babesiose/diagnóstico , Babesiose/epidemiologia , Babesiose/parasitologia , Filogenia , RNA Ribossômico 18S/genética , Variação Genética , África Austral/epidemiologia , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária
3.
Onderstepoort J Vet Res ; 84(1): e1-e9, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28155283

RESUMO

Several nucleic acid-based assays have been developed for detecting Anaplasma marginale and Anaplasma centrale in vectors and hosts, making the choice of method to use in endemic areas difficult. We evaluated the ability of the reverse line blot (RLB) hybridisation assay, two nested polymerase chain reaction (nPCR) assays and a duplex real-time quantitative polymerase chain reaction (qPCR) assay to detect A. marginale and A. centrale infections in cattle (n = 66) in South Africa. The lowest detection limits for A. marginale plasmid DNA were 2500 copies by the RLB assay, 250 copies by the nPCR and qPCR assays and 2500, 250 and 25 copies of A. centrale plasmid DNA by the RLB, nPCR and qPCR assays respectively. The qPCR assay detected more A. marginale- and A. centrale-positive samples than the other assays, either as single or mixed infections. Although the results of the qPCR and nPCR tests were in agreement for the majority (38) of A. marginale-positive samples, 13 samples tested negative for A. marginale using nPCR but positive using qPCR. To explain this discrepancy, the target sequence region of the nPCR assay was evaluated by cloning and sequencing the msp1ß gene from selected field samples. The results indicated sequence variation in the internal forward primer (AM100) area amongst the South African A. marginale msp1ß sequences, resulting in false negatives. We propose the use of the duplex qPCR assay in future studies as it is more sensitive and offers the benefits of quantification and multiplex detection of both Anaplasma spp.


Assuntos
Anaplasma centrale , Anaplasma marginale , Anaplasmose/diagnóstico , Doenças dos Bovinos/diagnóstico , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Anaplasma centrale/genética , Anaplasma marginale/genética , Anaplasmose/microbiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , DNA Bacteriano/genética , Hibridização de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA