Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Lipid Res ; 65(2): 100490, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38122934

RESUMO

Familial hypercholesterolemia (FH) is a common genetic disorder of lipid metabolism caused by pathogenic/likely pathogenic variants in LDLR, APOB, and PCSK9 genes. Variants in FH-phenocopy genes (LDLRAP1, APOE, LIPA, ABCG5, and ABCG8), polygenic hypercholesterolemia, and hyperlipoprotein (a) [Lp(a)] can also mimic a clinical FH phenotype. We aim to present a new diagnostic tool to unravel the genetic background of clinical FH phenotype. Biochemical and genetic study was performed in 1,005 individuals with clinical diagnosis of FH, referred to the Portuguese FH Study. A next-generation sequencing panel, covering eight genes and eight SNPs to determine LDL-C polygenic risk score and LPA genetic score, was validated, and used in this study. FH was genetically confirmed in 417 index cases: 408 heterozygotes and 9 homozygotes. Cascade screening increased the identification to 1,000 FH individuals, including 11 homozygotes. FH-negative individuals (phenotype positive and genotype negative) have Lp(a) >50 mg/dl (30%), high polygenic risk score (16%), other monogenic lipid metabolism disorders (1%), and heterozygous pathogenic variants in FH-phenocopy genes (2%). Heterozygous variants of uncertain significance were identified in primary genes (12%) and phenocopy genes (7%). Overall, 42% of our cohort was genetically confirmed with FH. In the remaining individuals, other causes for high LDL-C were identified in 68%. Hyper-Lp(a) or polygenic hypercholesterolemia may be the cause of the clinical FH phenotype in almost half of FH-negative individuals. A small part has pathogenic variants in ABCG5/ABCG8 in heterozygosity that can cause hypercholesterolemia and should be further investigated. This extended next-generation sequencing panel identifies individuals with FH and FH-phenocopies, allowing to personalize each person's treatment according to the affected pathway.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Pró-Proteína Convertase 9/genética , Hipercolesterolemia/genética , LDL-Colesterol/genética , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Fenótipo , Patrimônio Genético , Receptores de LDL/genética , Mutação
2.
Curr Opin Lipidol ; 32(2): 96-102, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33591029

RESUMO

PURPOSE OF REVIEW: To collect evidence on statin pharmacogenomics, and review what is known in this field for familial hypercholesterolemia (FH) patients. RECENT FINDINGS: There are well-known associations between specific single nucleotide polymorphisms involved in statin transport and metabolism and either adverse effects or altered lipid-lowering efficacy. However, the applicability of this knowledge is uncertain, especially in high-risk populations. There are alternative approaches to study plasma concentrations of statins and new insights on why some association studies fail to be replicated. SUMMARY: Statin therapy recommendations are not always followed in primary and secondary prevention and, even when followed, patients often fail to reach therapeutic target values. Considering the stringent 2019 European Atherosclerosis Society and European Society of Cardiology recommended target lipid levels, as well as the persistently high cost for alternative lipid-lowering therapies such as PCSK9 inhibitors, the variability in low-density lipoprotein cholesterol reductions on statin therapy is still an important factor that needs to be addressed to ensure better cardiovascular disease risk management, especially for FH patients, who have not been well studied historically in this context.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemia Tipo II , Inibidores de PCSK9 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Lipídeos , Inibidores de PCSK9/uso terapêutico , Farmacogenética , Pró-Proteína Convertase 9/genética
3.
Clin Genet ; 97(3): 457-466, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31893465

RESUMO

Familial hypercholesterolaemia (FH) is a monogenic disorder characterised by high low-density lipoprotein cholesterol (LDL-C) concentrations and increased cardiovascular risk. However, in clinically defined FH cohorts worldwide, an FH-causing variant is only found in 40%-50% of the cases. The aim of this work was to characterise the genetic cause of the FH phenotype in Portuguese clinical FH patients. Between 1999 and 2017, 731 index patients (311 children and 420 adults) who met the Simon Broome diagnostic criteria had been referred to our laboratory. LDLR, APOB, PCSK9, APOE, LIPA, LDLRAP1, ABCG5/8 genes were analysed by polymerase chain reaction amplification and Sanger sequencing. The 6-SNP LDL-C genetic risk score (GRS) for polygenic hypercholesterolaemia was validated in the Portuguese population and cases with a GRS over the 25th percentile were considered to have a high likelihood of polygenic hypercholesterolaemia. An FH-causing mutation was found in 39% of patients (94% in LDLR, 5% APOB and 1% PCSK9), while at least 29% have polygenic hypercholesterolaemia and 1% have other lipid disorders. A genetic cause for the FH phenotype was found in 503 patients (69%). All known causes of the FH phenotype should be investigated in FH cohorts to ensure accurate diagnosis and appropriate management.


Assuntos
LDL-Colesterol/genética , Predisposição Genética para Doença , Hiperlipoproteinemia Tipo II/genética , Erros Inatos do Metabolismo Lipídico/genética , Adolescente , Adulto , Apolipoproteína B-100/genética , Criança , Feminino , Humanos , Hiperlipoproteinemia Tipo II/patologia , Erros Inatos do Metabolismo Lipídico/patologia , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Adulto Jovem
4.
Genet Med ; 20(6): 591-598, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29261184

RESUMO

PurposeFamilial hypercholesterolemia (FH) is an autosomal disorder of lipid metabolism presenting with increased cardiovascular risk. Although more than 1,700 variants have been associated with FH, the great majority have not been functionally proved to affect the low-density lipoprotein receptor cycle. We aimed to classify all described variants associated with FH and to establish the proportion of variants that lack evidence to support their pathogenicity.MethodsWe followed American College of Medical Genetics and Genomics (ACMG) guidelines for the classification, and collected information from a variety of databases and individual reports. A worldwide overview of publicly available FH variants was also performed.ResultsA total of 2,104 unique variants were identified as being associated with FH, but only 166 variants have been proven by complete in vitro functional studies to be causative of disease. Additionally, applying the ACMG guidelines, 1,097 variants were considered pathogenic or likely pathogenic. Only seven variants were found in all five continents.ConclusionThe lack of functional evidence for about 85% of all variants found in FH patients can compromise FH diagnosis and patient prognosis. ACMG classification improves variant interpretation, but functional studies are necessary to understand the effect of about 40% of all variants reported. Nevertheless, ACMG guidelines need to be adapted to FH for a better diagnosis.


Assuntos
Apolipoproteína B-100/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Bases de Dados Genéticas , Variação Genética , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Metabolismo dos Lipídeos , Mutação , Fenótipo
5.
Atherosclerosis ; 395: 117579, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824844

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for advancements in risk assessment and management strategies. Although significant progress has been made recently, identifying and managing apparently healthy individuals at a higher risk of developing atherosclerosis and those with subclinical atherosclerosis still poses significant challenges. Traditional risk assessment tools have limitations in accurately predicting future events and fail to encompass the complexity of the atherosclerosis trajectory. In this review, we describe novel approaches in biomarkers, genetics, advanced imaging techniques, and artificial intelligence that have emerged to address this gap. Moreover, polygenic risk scores and imaging modalities such as coronary artery calcium scoring, and coronary computed tomography angiography offer promising avenues for enhancing primary cardiovascular risk stratification and personalised intervention strategies. On the other hand, interventions aiming against atherosclerosis development or promoting plaque regression have gained attention in primary ASCVD prevention. Therefore, the potential role of drugs like statins, ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, omega-3 fatty acids, antihypertensive agents, as well as glucose-lowering and anti-inflammatory drugs are also discussed. Since findings regarding the efficacy of these interventions vary, further research is still required to elucidate their mechanisms of action, optimize treatment regimens, and determine their long-term effects on ASCVD outcomes. In conclusion, advancements in strategies addressing atherosclerosis prevention and plaque regression present promising avenues for enhancing primary ASCVD prevention through personalised approaches tailored to individual risk profiles. Nevertheless, ongoing research efforts are imperative to refine these strategies further and maximise their effectiveness in safeguarding cardiovascular health.

6.
J Clin Med ; 12(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568561

RESUMO

BACKGROUND: There is limited data on the genetic characteristics of patients with familial hypercholesterolemia (FH) in Latvia. We aim to describe monogenic variants in patients from the Latvian Registry of FH (LRFH). METHODS: Whole genome sequencing with 30× coverage was performed in unrelated index cases from the LRFH and the Genome Database of Latvian Population. LDLR, APOB, PCSK9, LDLRAP1, ABCG5, ABCG8, LIPA, LPA, CYP27A1, and APOE genes were analyzed. Only variants annotated as pathogenic (P) or likely pathogenic (LP) using the FH Variant Curation Expert Panel guidelines for LDLR and adaptations for APOB and PCSK9 were reported. RESULTS: Among 163 patients, the mean highest documented LDL-cholesterol level was 7.47 ± 1.60 mmol/L, and 79.1% of patients had LDL-cholesterol ≥6.50 mmol/L. A total of 15 P/LP variants were found in 34 patients (diagnostic yield: 20.9%): 14 in the LDLR gene and 1 in the APOB gene. Additionally, 24, 54, and 13 VUS were detected in LDLR, APOB, and PCSK9, respectively. No P/LP variants were identified in the other tested genes. CONCLUSIONS: Despite the high clinical likelihood of FH, confirmed P/LP variants were detected in only 20.9% of patients in the Latvian cohort when assessed with genome-wide next generation sequencing.

7.
Atherosclerosis ; 383: 117314, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37813054

RESUMO

BACKGROUND AND AIMS: The early diagnosis of familial hypercholesterolaemia is associated with a significant reduction in cardiovascular disease (CVD) risk. While the recent use of statistical and machine learning algorithms has shown promising results in comparison with traditional clinical criteria, when applied to screening of potential FH cases in large cohorts, most studies in this field are developed using a single cohort of patients, which may hamper the application of such algorithms to other populations. In the current study, a logistic regression (LR) based algorithm was developed combining observations from three different national FH cohorts, from Portugal, Brazil and Sweden. Independent samples from these cohorts were then used to test the model, as well as an external dataset from Italy. METHODS: The area under the receiver operating characteristics (AUROC) and precision-recall (AUPRC) curves was used to assess the discriminatory ability among the different samples. Comparisons between the LR model and Dutch Lipid Clinic Network (DLCN) clinical criteria were performed by means of McNemar tests, and by the calculation of several operating characteristics. RESULTS: AUROC and AUPRC values were generally higher for all testing sets when compared to the training set. Compared with DLCN criteria, a significantly higher number of correctly classified observations were identified for the Brazilian (p < 0.01), Swedish (p < 0.01), and Italian testing sets (p < 0.01). Higher accuracy (Acc), G mean and F1 score values were also observed for all testing sets. CONCLUSIONS: Compared to DLCN criteria, the LR model revealed improved ability to correctly classify observations, and was able to retain a similar number of FH cases, with less false positive retention. Generalization of the LR model was very good across all testing samples, suggesting it can be an effective screening tool if applied to different populations.


Assuntos
Hiperlipoproteinemia Tipo II , Humanos , Adulto , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Testes Genéticos , Algoritmos , Itália , Curva ROC
8.
J Clin Lipidol ; 11(2): 477-484.e2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28502505

RESUMO

BACKGROUND: Lysosomal acid lipase deficiency (LALD) is an autosomal recessive disorder and an unrecognized cause of dyslipidemia. Patients usually present with dyslipidemia and altered liver function and mutations in LIPA gene are the underlying cause of LALD. OBJECTIVE: The aim of this study was to investigate LALD in individuals with severe dyslipidemia and/or liver steatosis. METHODS: Coding, splice regions, and promoter region of LIPA were sequenced by Sanger sequencing in a cohort of mutation-negative familial hypercholesterolemia (FH) patients (n = 492) and in a population sample comprising individuals with several types of dyslipidemia and/or liver steatosis (n = 258). RESULTS: This study led to the identification of LALD in 4 children referred to the Portuguese FH Study, all with a clinical diagnosis of FH. Mild liver dysfunction was present at the age of FH diagnosis; however, a diagnosis of LALD was not considered. No adults at the time of referral have been identified with LALD. CONCLUSION: LALD is a life-threatening disorder, and early identification is crucial for the implementation of specific treatment to avoid premature mortality. FH cohorts should be investigated to identify possible LALD patients, who will need appropriate treatment. These results highlight the importance of correctly identifying the etiology of the dyslipidemia.


Assuntos
Hiperlipoproteinemia Tipo II/complicações , Doença de Wolman/complicações , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Doença de Wolman/genética , Adulto Jovem , Doença de Wolman
9.
Case Rep Genet ; 2012: 623860, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23074689

RESUMO

Individual's hearing performance after cochlear implant (CI) is variable and depends on different factors such as etiology of deafness, age at implantation, and social/family hearing environment. Here we report the case of dizygotic twins, boy and girl, presenting with neurosensorial profound deafness prior CI (age of implantation = 3.5 years old). Both parents have severe/profound deafness, since childhood, and use sign language as primary mode of communication. Clinical and genetic characterization was performed, as well as the assessment of the auditory and oral (re)habilitation after CI, applying a battery of audiological, speech, and language tests. The twin girl and the father were homozygous for the c.35delG mutation in the GJB2 gene, while the twin boy and the mother were compound heterozygotes, both monoallelic for c.35delG and for the deletion del(GJB6-D13S1830) in the GJB6 gene. The remaining hearing impaired relatives were c.35delG homozygotes. The genetic cause of deafness was thus identified in this family. Some noteworthy differences were observed regarding twins' auditory and oral performance after CI. Subsequent follow-up of these children allowed us to conclude that those differences were most likely due to the different environment in which the twins have been living than to their different GJB2/GJB6 genotypes.

10.
Int J Pediatr Otorhinolaryngol ; 74(10): 1135-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20650534

RESUMO

OBJECTIVES: Hearing loss is a condition that interferes with the development of the child at a cognitive and language level. Therefore, early diagnosis of deafness is important for (re)habilitation, namely through the use of cochlear implant (CI). The present study aimed at screening CI Portuguese individuals for the presence of mutations in the genes GJB2 and GJB6 (DFNB1 locus), and searching a possible correlation between the genotype and the oral habilitation outcome following implantation. METHODS: Our sample included 117 CI individuals implanted longer than 5 years. Sequencing of GJB2 entire coding region was first performed. The presence of deletions del(GJB6-D13S1830) and del(GJB6-D13S1854) was subsequently tested by multiplex PCR. To assess the oral outcome of these individuals, a global score is calculated through a formula that integrates the results of a battery of speech and audiological tests routinely used in ORL services. This global oral performance score was used to test whether individuals with DFNB1-associated deafness perform significantly better than individuals without DFNB1-associated deafness. RESULTS: In 35% of the cases, deafness was clearly associated to DFNB1. The most common mutated allele was c.35delG (85%). Other variants have also been found, namely p.Gly130Ala, p.Asn206Ser, p.Val37Ile, p.Glu47X, p.Arg184Trp, p.Trp24X and the two common GJB6 deletions, del(GJB6-D13S1854) and del(GJB6-D13S1830), the last one identified for the first time in our population. Regarding the oral outcome, after testing the homogeneity of the two groups it could be observed that, in mean, the individuals with DFNB1-associated deafness perform significantly better (p=0.012) than the individuals without DFNB1-associated deafness. DISCUSSION AND CONCLUSION: This first screening of DFNB1 genes in the Portuguese CI population provides clear evidence of the high proportion of DFNB1-associated deafness amongst the Portuguese implanted individuals. DFNB1 status is significantly associated to higher oral performance scores, with DFNB1 individuals performing, on average, 6% better than the individuals without DFNB1-associated deafness.


Assuntos
Implante Coclear , Implantes Cocleares , Conexinas/genética , Surdez/genética , Desenvolvimento da Linguagem , Mutação , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Conexina 26 , Conexina 30 , Surdez/terapia , Feminino , Humanos , Lactente , Masculino , Portugal , Prevalência , Inteligibilidade da Fala , Percepção da Fala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA