Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geoderma ; 4322023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37928070

RESUMO

Inadvertent oral ingestion is an important exposure pathway of arsenic (As) containing soil and dust. Previous researches evidenced health risk of bioaccessible As from soil and dust, but it is unclear about As mobilization mechanisms in health implications from As exposure. In this study, we investigated As release behaviors and the solid-liquid interface reactions toward As(V)-containing iron minerals in simulated gastrointestinal bio-fluids. The maximum As release amount was 0.57 mg/L from As-containing goethite and 0.82 mg/L from As-containing hematite at 9 h, and the As bioaccessibility was 10.8% and 21.6%, respectively. The higher exposure risk from hematite-sorbed As in gastrointestinal fluid was found even though goethite initially contained more arsenate than hematite. Mechanism analysis revealed that As release was mainly coupled with acid dissolution and reductive dissolution of iron minerals. Proteases enhanced As mobilization and thus increased As bioaccessibility. The As(V) released and simultaneously transformed to high toxic As(III) by gastric pepsin, while As(V) reduction in intestine was triggered by pancreatin and freshly formed Fe(II) in gastric digests. CaCl2 reduced As bioaccessibility, indicating that calcium-rich food or drugs may be effective dietary strategies to reduce As toxicity. The results deepened our understanding of the As release mechanisms associated with iron minerals in the simulated gastrointestinal tract and supplied a dietary strategy to alleviate the health risk of incidental As intake.

2.
Environ Sci Technol ; 54(10): 6031-6042, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32364719

RESUMO

Uranyl phosphate minerals represent an important secondary source of uranium release at contaminated sites. In flow-through column experiments with background porewater (BPW) of typical freshwater aquifer composition (pH 7.0, ∼0.2 mM total carbonate (TC)), dissolution of K-ankoleite (KUO2PO4·3H2O), Na-autunite (NaUO2PO4·3H2O), and Ca-autunite (Ca(UO2)2(PO4)2·6H2O) was controlled by mineral solubility at steady-state U release. Effluent concentrations indicated exchange with BPW cations, and postreaction characterization showed alteration of the initial mineral composition, changes in structure (decreased crystallinity, increased disorder, and distortion of U-P mineral sheets) and possible neoformation of phases of similar structure. Increasing the BPW pH and TC to 8.1-8.2 and 2.2-3.7 mM, respectively, resulted in mineral undersaturation and produced ca. 2 orders-of-magnitude higher U and P release without reaching steady state. Minerals incorporated less BPW cations into their structures compared to low carbonate BPW experiments but showed structural disorder and distortion. Faster dissolution rates were attributed to the formation of binary and ternary uranyl carbonate complexes that accelerate the rate-determining step of uranyl detachment from the uranyl-phosphate layered structure. Calculated dissolution rates (log Rs between -8.95 and -10.32 mol m-2 s-1), accounting for reaction and transport in porous media, were similar to dissolution rates of other classes of uranyl minerals. In undersaturated solutions, dissolution rates for uranyl phosphate, oxyhydroxide, and silicate minerals can be predicted within 1-2 orders-of-magnitude from pH ∼5-10 on the basis of pH/carbonate concentration.


Assuntos
Urânio , Poluentes Radioativos da Água/análise , Carbonatos , Concentração de Íons de Hidrogênio , Minerais , Fosfatos , Porosidade , Solubilidade , Compostos de Urânio
3.
Glob Chang Biol ; 25(4): 1529-1546, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30554462

RESUMO

Rising atmospheric CO2 concentrations have increased interest in the potential for forest ecosystems and soils to act as carbon (C) sinks. While soil organic C contents often vary with tree species identity, little is known about if, and how, tree species influence the stability of C in soil. Using a 40 year old common garden experiment with replicated plots of eleven temperate tree species, we investigated relationships between soil organic matter (SOM) stability in mineral soils and 17 ecological factors (including tree tissue chemistry, magnitude of organic matter inputs to the soil and their turnover, microbial community descriptors, and soil physicochemical properties). We measured five SOM stability indices, including heterotrophic respiration, C in aggregate occluded particulate organic matter (POM) and mineral associated SOM, and bulk SOM δ15 N and ∆14 C. The stability of SOM varied substantially among tree species, and this variability was independent of the amount of organic C in soils. Thus, when considering forest soils as C sinks, the stability of C stocks must be considered in addition to their size. Further, our results suggest tree species regulate soil C stability via the composition of their tissues, especially roots. Stability of SOM appeared to be greater (as indicated by higher δ15 N and reduced respiration) beneath species with higher concentrations of nitrogen and lower amounts of acid insoluble compounds in their roots, while SOM stability appeared to be lower (as indicated by higher respiration and lower proportions of C in aggregate occluded POM) beneath species with higher tissue calcium contents. The proportion of C in mineral associated SOM and bulk soil ∆14 C, though, were negligibly dependent on tree species traits, likely reflecting an insensitivity of some SOM pools to decadal scale shifts in ecological factors. Strategies aiming to increase soil C stocks may thus focus on particulate C pools, which can more easily be manipulated and are most sensitive to climate change.

4.
Environ Sci Technol ; 52(3): 1156-1164, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29241010

RESUMO

Phytostabilization is a cost-effective long-term bioremediation technique for the immobilization of metalliferous mine tailings. However, the biogeochemical processes affecting metal(loid) molecular stabilization and mobility in the root zone remain poorly resolved. The roots of Prosopis juliflora grown for up to 36 months in compost-amended pyritic mine tailings from a federal Superfund site were investigated by microscale and bulk synchrotron X-ray absorption spectroscopy (XAS) and multiple energy micro-X-ray fluorescence imaging to determine iron, arsenic, and sulfur speciation, abundance, and spatial distribution. Whereas ferrihydrite-bound As(V) species predominated in the initial bulk mine tailings, the rhizosphere speciation of arsenic was distinctly different. Root-associated As(V) was immobilized on the root epidermis bound to ferric sulfate precipitates and within root vacuoles as trivalent As(III)-(SR)3 tris-thiolate complexes. Molar Fe-to-As ratios of root epidermis tissue were two times higher than the 15% compost-amended bulk tailings growth medium. Rhizoplane-associated ferric sulfate phases that showed a high capacity to scavenge As(V) were dissimilar from the bulk-tailings mineralogy as shown by XAS and X-ray diffraction, indicating a root-surface mechanism for their formation or accumulation.


Assuntos
Arsênio , Prosopis , Biodegradação Ambiental , Metais , Rizosfera
5.
Microb Ecol ; 74(4): 853-867, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28577167

RESUMO

Plant establishment during phytostabilization of legacy mine tailings in semiarid regions is challenging due to low pH, low organic carbon, low nutrients, and high toxic metal(loid) concentrations. Plant-associated bacterial communities are particularly important under these harsh conditions because of their beneficial services to plants. We hypothesize that bacterial colonization profiles on rhizoplane surfaces reflect deterministic processes that are governed by plant health and the root environment. The aim of this study was to identify associations between bacterial colonization patterns on buffalo grass (Buchloe dactyloides) rhizoplanes and both plant status (leaf chlorophyll and plant cover) and substrate biogeochemistry (pH, electrical conductivity, total organic carbon, total nitrogen, and rhizosphere microbial community). Buffalo grass plants from mesocosm- and field-scale phytostabilization trials conducted with tailings from the Iron King Mine and Humboldt Smelter Superfund Site in Dewey-Humboldt, Arizona, were analyzed. These tailings are extremely acidic and have arsenic and lead concentrations of 2-4 g kg-1 substrate. Bacterial communities on rhizoplanes and in rhizosphere-associated substrate were characterized using fluorescence in situ hybridization and 16S rRNA gene amplicon sequencing, respectively. The results indicated that the metabolic status of rhizoplane bacterial colonizers is significantly related to plant health. Principal component analysis revealed that root-surface Alphaproteobacteria relative abundance was associated most strongly with substrate pH and Gammaproteobacteria relative abundance associated strongly with substrate pH and plant cover. These factors also affected the phylogenetic profiles of the associated rhizosphere communities. In summary, rhizoplane bacterial colonization patterns are plant specific and influenced by plant status and rhizosphere biogeochemical conditions.


Assuntos
Fenômenos Fisiológicos Bacterianos , Poaceae/microbiologia , Rizosfera , Microbiologia do Solo , Poluentes do Solo/análise , Arizona , DNA Bacteriano/genética , Hibridização in Situ Fluorescente , Mineração , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Environ Sci Technol ; 51(22): 13327-13334, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29072907

RESUMO

2,4-Dinitrosanisole (DNAN) is an insensitive munitions component replacing conventional explosives. While DNAN is known to biotransform in soils to aromatic amines and azo-dimers, it is seldom mineralized by indigenous soil bacteria. Incorporation of DNAN biotransformation products into soil as humus-bound material could serve as a plausible remediation strategy. The present work studied biotransformation of DNAN in soil and sludge microcosms supplemented with uniformly ring-labeled 14C-DNAN to quantify the distribution of label in soil, aqueous, and gaseous phases. Electron donor amendments, different redox conditions (anaerobic, aerobic, sequential anaerobic-aerobic), and the extracellular oxidoreductase enzyme horseradish peroxidase (HRP) were evaluated to maximize incorporation of DNAN biotransformation products into the nonextractable soil humus fraction, humin. Irreversible humin incorporation of 14C-DNAN occurred at higher rates in anaerobic conditions, with a moderate increase when pyruvate was added. Additionally, a single dose of HRP resulted in an instantaneous increased incorporation of 14C-DNAN into the humin fraction. 14C-DNAN incorporation to the humin fraction was strongly correlated (R2 = 0.93) by the soil organic carbon (OC) amount present (either intrinsic or amended). Globally, our results suggest that DNAN biotransformation products can be irreversibly bound to humin in soils as a remediation strategy, which can be enhanced by adding soil OC.


Assuntos
Anisóis , Solo , Radioisótopos de Carbono , Poluentes do Solo
7.
Environ Sci Technol ; 51(19): 11011-11019, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28884577

RESUMO

The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.


Assuntos
Sedimentos Geológicos/química , Minerais/química , Fosfatos/química , Resíduos Radioativos/análise , Compostos de Urânio/química , Urânio/química , Poluentes Radioativos da Água/química , Monitoramento Ambiental , Poluentes Radioativos da Água/análise , Tempo (Meteorologia)
8.
Biotechnol Bioeng ; 113(3): 522-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26333155

RESUMO

Arsenic (As) is a highly toxic metalloid that has been identified at high concentrations in groundwater in certain locations around the world. Concurrent microbial reduction of arsenate (As(V) ) and sulfate (SO4 (2-) ) can result in the formation of poorly soluble arsenic sulfide minerals (ASM). The objective of this research was to study As biomineralization in a minimal iron environment for the bioremediation of As-contaminated groundwater using simultaneous As(V) and SO4 (2-) reduction. A continuous-flow anaerobic bioreactor was maintained at slightly acidic pH (6.25-6.50) and fed with As(V) and SO4 (2-) , utilizing ethanol as an electron donor for over 250 d. A second bioreactor running under the same conditions but lacking SO4 (2-) was operated as a control to study the fate of As (without S). The reactor fed with SO4 (2-) removed an average 91.2% of the total soluble As at volumetric rates up to 2.9 mg As/(L · h), while less than 5% removal was observed in the control bioreactor. Soluble S removal occurred with an S to As molar ratio of 1.2, suggesting the formation of a mixture of orpiment- (As2 S3 ) and realgar-like (AsS) solid phases. Solid phase characterization using K-edge X-ray absorption spectroscopy confirmed the formation of a mixture of As2 S3 and AsS. These results indicate that a bioremediation process relying on the addition of a simple, low-cost electron donor offers potential to promote the removal of As from groundwater with naturally occurring or added SO4 (2-) by precipitation of ASM.


Assuntos
Arsênio/metabolismo , Arsenicais/metabolismo , Reatores Biológicos/microbiologia , Sulfetos/metabolismo , Purificação da Água , Anaerobiose , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Minerais/metabolismo , Espectroscopia por Absorção de Raios X
9.
Environ Sci Technol ; 50(6): 2811-29, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26849204

RESUMO

Internal pore domains exist within rocks, lithic fragments, subsurface sediments, and soil aggregates. These domains, termed internal domains in porous media (IDPM), represent a subset of a material's porosity, contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse media types, and are important locations for chemical reactivity and fluid storage. IDPM are key features controlling hydrocarbon release from shales in hydraulic fracture systems, organic matter decomposition in soil, weathering and soil formation, and contaminant behavior in the vadose zone and groundwater. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM, and their contributions to system behaviors. Here we discuss analytical methods to characterize IDPM, evaluate information on their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess the potential for their inclusion in reactive transport models. Ongoing developments in measurement technologies and sensitivity, and computer-assisted interpretation will improve understanding of these critical features in the future. Impactful research opportunities exist to advance understanding of IDPM, and to incorporate their effects in reactive transport models for improved environmental simulation and prediction.


Assuntos
Água Subterrânea/química , Fenômenos Geológicos , Minerais , Modelos Teóricos , Porosidade
10.
Environ Sci Technol ; 49(9): 5681-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25839647

RESUMO

Insensitive munitions (IM) are a new class of explosives that are increasingly being adopted by the military. The ability of soil microbial communities to degrade IMs is relatively unknown. In this study, microbial communities from a wide range of soils were tested in microcosms for their ability to degrade the IM, 3-nitro-1,2,4-triazol-5-one (NTO). All seven soil inocula tested were able to readily reduce NTO to 3-amino-1,2,4-triazol-5-one (ATO) via 3-hydroxyamino-1,2,4-triazol-5-one (HTO), under anaerobic conditions with H2 as an electron donor. Numerous other electron donors were shown to be suitable for NTO-reducing bacteria. The addition of a small amount of yeast extract (10 mg/L) was critical to diminish lag times and increased the biotransformation rate of NTO in nearly all cases indicating yeast extract provided important nutrients for NTO-reducing bacteria. The main biotransformation product, ATO, was degradable only in aerobic conditions, as evidenced by a rise in the inorganic nitrogen species nitrite and nitrate, indicative of nitrogen-mineralization. NTO was nonbiodegradable in aerobic microcosms with all soil inocula.


Assuntos
Bactérias/metabolismo , Substâncias Explosivas/metabolismo , Microbiota , Nitrocompostos/metabolismo , Microbiologia do Solo , Triazóis/metabolismo , Aerobiose , Anaerobiose , Biodegradação Ambiental , Biotransformação , Nitrogênio/metabolismo
11.
J Environ Qual ; 44(3): 945-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024274

RESUMO

At the Hanford Site in the state of Washington, leakage of hyperalkaline, high ionic strength wastewater from underground storage tanks into the vadose zone has induced mineral transformations and changes in radionuclide speciation. Remediation of this wastewater will decrease the ionic strength of water infiltrating to the vadose zone and could affect the fate of the radionuclides. Although it was shown that radionuclide host phases are thermodynamically stable in the presence of waste fluids, a decrease in solution ionic strength and pH could alter aggregate stability and remobilize radionuclide-bearing colloids and particulate matter. We quantified the release of particulate, colloidal, and truly dissolved Sr, Cs, and I from hyperalkaline-weathered Hanford sediments during a low ionic strength pore water leach and characterized the released particles and colloids using electron microscopy and X-ray diffraction. Although most of the Sr, Cs, and I was released in dissolved form, between 3 and 30% of the Sr and 4 to 18% of the Cs was associated with a dominantly zeolitic mobile particulate fraction. Thus, the removal of hyperalkaline wastewater will likely induce Sr and Cs mobilization that will be augmented by particulate- and colloid-facilitated transport.

12.
Appl Geochem ; 62: 131-149, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26549929

RESUMO

Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg-1 (3080, 2200, and 2570 mg kg-1), respectively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and 4.2 fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal speciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the redox transition zone (25-54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite, and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe phases, principally ferrihydrite. In surface samples (0-35 cm), metal(loid)s are found as sorbed species or incorporated into secondary Fe hydroxysulfate phases, such as schwertmannite and jarosites. Metal-bearing efflorescent salts (e.g., ZnSO4·nH2O) were detected in the surficial sample. Taken together, these data suggest the bioaccessibility and lability of metal(loid)s are altered by mineral weathering, which results in both the downward migration of metal(loid)s to the redox boundary, as well as the precipitation of metal salts at the surface.

13.
Environ Sci Technol ; 48(11): 6097-106, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24754743

RESUMO

Uranium speciation and physical-chemical characteristics were studied in solids precipitated from synthetic acidic to circumneutral wastewaters in the presence and absence of dissolved silica and phosphate to examine thermodynamic and kinetic controls on phase formation. Composition of synthetic wastewater was based on disposal sites 216-U-8 and 216-U-12 Cribs at the Hanford site (WA, USA). In the absence of dissolved silica or phosphate, crystalline or amorphous uranyl oxide hydrates, either compreignacite or meta-schoepite, precipitated at pH 5 or 7 after 30 d of reaction, in agreement with thermodynamic calculations. In the presence of 1 mM dissolved silica representative of groundwater concentrations, amorphous phases dominated by compreignacite precipitated rapidly at pH 5 or 7 as a metastable phase and formation of poorly crystalline boltwoodite, the thermodynamically stable uranyl silicate phase, was slow. In the presence of phosphate (3 mM), meta-ankoleite initially precipitated as the primary phase at pH 3, 5, or 7 regardless of the presence of 1 mM dissolved silica. Analysis of precipitates by U LIII-edge extended X-ray absorption fine structure (EXAFS) indicated that "autunite-type" sheets of meta-ankoleite transformed to "phosphuranylite-type" sheets after 30 d of reaction, probably due to Ca substitution in the structure. Low solubility of uranyl phosphate phases limits dissolved U(VI) concentrations but differences in particle size, crystallinity, and precipitate composition vary with pH and base cation concentration, which will influence the thermodynamic and kinetic stability of these phases.


Assuntos
Fosfatos/química , Dióxido de Silício/química , Compostos de Urânio/química , Urânio/química , Águas Residuárias/química , Poluentes Radioativos da Água/química , Precipitação Química , Água Subterrânea/química , Resíduos Radioativos/análise , Solubilidade , Urânio/análise , Compostos de Urânio/análise , Poluentes Radioativos da Água/análise
14.
Rev Environ Health ; 29(1-2): 23-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552959

RESUMO

Mine tailings contain multiple toxic metal(loid)s that pose a threat to human health via inhalation and ingestion. The goals of this research include understanding the speciation and molecular environment of these toxic metal(loid)s (arsenic and lead) as well as the impacts particle size and residence time have on their bioaccessibilty in simulated gastric and lung fluid. Additionally, future work will include smaller size fractions (PM10 and PM2.5) of surface mine tailings, with the goal of increasing our understanding of multi-metal release from contaminated geo-dusts in simulated bio-fluids. This research is important to environmental human health risk assessment as it increases the accuracy of exposure estimations to toxic metal(loid)s.


Assuntos
Arsênio/química , Poeira/análise , Poluentes Ambientais/química , Chumbo/química , Mineração , Arizona , Técnicas In Vitro , Tamanho da Partícula
15.
J Labelled Comp Radiopharm ; 57(6): 434-6, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24596018

RESUMO

Syntheses of [(13)C6]-2,4-dinitroanisole (ring-(13)C6) from [(13)C6]-anisole (ring-(13)C6) and [(15)N2]-2,4-dinitroanisole from anisole using in situ generated acetyl nitrate and [(15)N]-acetyl nitrate, respectively, are described. Treatment of [(13)C6]-anisole (ring-(13)C6) with acetyl nitrate generated in 100% HNO3 gave [(13)C6]-2,4-dinitroanisole (ring-(13)C6) in 83% yield. Treatment of anisole with [(15)N]-acetyl nitrate generated in 10 N [(15)N]-HNO3 gave [(15)N2 ]-2,4-dinitroanisole in 44% yield after two cycles of nitration. Byproducts in the latter reaction included [(15)N]-2-nitroanisole and [(15)N]-4-nitroanisole.


Assuntos
Anisóis/química , Anisóis/síntese química , Radioquímica , Isótopos de Carbono/química , Técnicas de Química Sintética , Nitratos/química , Isótopos de Nitrogênio/química
16.
J Hazard Mater ; 479: 135684, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241359

RESUMO

Arsenic (As) mobilization in paddy fields poses significant health risks, necessitating a thorough understanding of the controlling factors and mechanisms to safeguard human health. We conducted a comprehensive investigation of the soil-porewater-rice system throughout the rice life cycle, focusing on monitoring arsenic distribution and porewater characteristics in typical paddy field plots. Soil pH ranged from 4.79 to 7.98, while porewater pH was weakly alkaline, varying from 7.2 to 7.47. Total arsenic content in paddy soils ranged from 6.8 to 17.2 mg/kg, with arsenic concentrations in porewater during rice growth ranging from 2.97 to 14.85 µg/L. Specifically, arsenite concentrations in porewater ranged from 0.48 to 7.91 µg/L, and arsenate concentrations ranged from 0.73 to 5.83 µg/L. Through principal component analysis (PCA) and analysis of redox factors, we identified that arsenic concentration in porewater is predominantly influenced by the interplay of reduction and desorption processes, contributing 43.5 % collectively. Specifically, the reductive dissolution of iron oxides associated with organic carbon accounted for 23.3 % of arsenic concentration dynamics in porewater. Additionally, arsenic release from the soil followed a sequence starting with nitrate reduction, followed by ferric ion reduction, and subsequently sulfate reduction. Our findings provide valuable insights into the mechanisms governing arsenic mobilization within the paddy soil-porewater-rice system. These insights could inform strategies for irrigation management aimed at mitigating arsenic toxicity and associated health risks.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Poluentes Químicos da Água , Oryza/química , Oryza/crescimento & desenvolvimento , Arsênio/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Solo/química , Agricultura , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Oxirredução
17.
Environ Int ; 193: 109073, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39442321

RESUMO

Vanadium(V) contaminated soil is abundant in iron(Fe) oxides due to co-occurrence of V and Fe bearing minerals. However, biogeochemical transformation of redox-active V and Fe in soil, and the bacteria involved, has remained less investigated. This study explored the extent to which microbial mediated organic decomposition coupled to Fe(III) reduction contributed to V(V) release/reduction in V-contaminated paddy soil under different organic amendments. Soil flooding decreased toxic reducible V while increased less toxic oxidizable V. Glucose and straw promoted V(V) release with temporarily increasing V(V) concentration by 73.59-106.34 mg/kg compared to the control treatment and subsequently promoted V(V) reduction with decreasing V(V) to concentrations eventually similar to the control treatment. Biochar incorporation under glucose and straw amendments moderately alleviated V(V) release. The significantly positive correlation between Fe(II) and V(V) concentrations during the V solubilization process indicated a temporal coupling of Fe(III) reduction and V(V) release. Clostridium and Massilia mediated Fe(III) reductive dissolution and V(V) release, while Anaeromyxobacter, Sphingomonas, Bryobacter, Acidobacteriaceae and Anaerolineaceae contributed to V(V) reduction. This study provides a deeper understanding of V biotransformation coupled to Fe and C cycling and suggests a remediation strategy for V-contaminated soils via regulating Fe(III) reduction to weaken V(V) release or to promote V(V) reduction.

18.
J Hazard Mater ; 467: 133633, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335617

RESUMO

Cadmium (Cd) and arsenic (As) co-contamination is widespread and threatens human health, therefore it is important to investigate the bioavailability of Cd and As co-exposure. Currently, the interactions of Cd and As by in vitro assays are unknown. In this work, we studied the concurrent Cd-As release behaviors and interactions with in vitro simulated gastric bio-fluid assays. The studies demonstrated that As bioaccessibility (2.04 to 0.18 ± 0.03%) decreased with Cd addition compared to the As(V) single system, while Cd bioaccessibility (11.02 to 39.08 ± 1.91%) increased with As addition compared to the Cd single system. Release of Cd and As is coupled to proton-promoted and reductive dissolution of ferrihydrite. The As(V) is released and reduced to As(Ⅲ) by pepsin. Pepsin formed soluble complexes with Cd and As. X-ray photoelectron spectroscopy showed that Cd and As formed Fe-As-Cd ternary complexes on ferrihydrite surfaces. The coordination intensity of As-O-Cd is lower than that of As-O-Fe, resulting in more Cd release from Fe-As-Cd ternary complexes. Our study deepens the understanding of health risks from Cd and As interactions during environmental co-exposure of multiple metal(loid)s.


Assuntos
Arsênio , Cádmio , Compostos Férricos , Humanos , Pepsina A , Digestão
19.
Chemosphere ; 366: 143503, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39401671

RESUMO

Although the antimicrobial mechanisms of nanomaterials have been extensively investigated, bacterial defense mechanisms associated with AgNPs have not been fully elucidated. We here report that dissolved Ag+ (>0.05 µg mL-1) displayed higher toxicity on cell growth of strain Cupriavidus metallidurans BS1 (GCA_003260185.2) in comparison to 2 and 20 nm AgNPs. The genes necessary for synthesis of distinct abundance and composition of extracellular polymeric substances (EPS) were induced in strain BS1 exposed to Ag stress. This resulted in 20.1% (Ag(I)-EPS) and 24.2% (2 nm AgNPs-EPS) of the CO band integrated intensities being converted into C-OH/C-O-C group vibrations and the Ag-O bond was formed between EPS and 20 nm AgNPs. Meanwhile, the expression of primary resistance genes of the cus, sil and cup operon encoding HME-RND-driven efflux systems as well as a PIB1-type ATPase (CupA) were significantly induced after exposure to Ag(I), 2 and 20 nm AgNPs, respectively. Furthermore, distinct genes involved in biosynthesis pathways responsible for production of EPS were induced to relieve the toxicity of Ag(I), 2 nm and 20 nm AgNPs. This combined action is one potential reason why strain BS1 displayed distinct resistances in response to Ag(I) compared to 2 and 20 nm AgNPs. This work will help in understanding processes important in bacterial defensive mechanisms to AgNPs.


Assuntos
Cupriavidus , Matriz Extracelular de Substâncias Poliméricas , Nanopartículas Metálicas , Prata , Cupriavidus/efeitos dos fármacos , Cupriavidus/genética , Cupriavidus/metabolismo , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Íons
20.
Environ Sci Technol ; 47(22): 12992-3000, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24102155

RESUMO

During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the toxicity characteristic leaching procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 days, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially coprecipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75-81% of As(V) was reduced to As(III), and 53-68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multienergy micro-X-ray fluorescence (ME-µXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide coprecipitate formation.


Assuntos
Arsênio/isolamento & purificação , Carbonatos/química , Compostos Férricos/química , Ferro/isolamento & purificação , Instalações de Eliminação de Resíduos , Adsorção , Espectrometria por Raios X , Sulfatos/química , Poluentes Químicos da Água/isolamento & purificação , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA