Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 143(7): 2089-2105, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572488

RESUMO

Despite important efforts to solve the clinico-radiological paradox, correlation between lesion load and physical disability in patients with multiple sclerosis remains modest. One hypothesis could be that lesion location in corticospinal tracts plays a key role in explaining motor impairment. In this study, we describe the distribution of lesions along the corticospinal tracts from the cortex to the cervical spinal cord in patients with various disease phenotypes and disability status. We also assess the link between lesion load and location within corticospinal tracts, and disability at baseline and 2-year follow-up. We retrospectively included 290 patients (22 clinically isolated syndrome, 198 relapsing remitting, 39 secondary progressive, 31 primary progressive multiple sclerosis) from eight sites. Lesions were segmented on both brain (T2-FLAIR or T2-weighted) and cervical (axial T2- or T2*-weighted) MRI scans. Data were processed using an automated and publicly available pipeline. Brain, brainstem and spinal cord portions of the corticospinal tracts were identified using probabilistic atlases to measure the lesion volume fraction. Lesion frequency maps were produced for each phenotype and disability scores assessed with Expanded Disability Status Scale score and pyramidal functional system score. Results show that lesions were not homogeneously distributed along the corticospinal tracts, with the highest lesion frequency in the corona radiata and between C2 and C4 vertebral levels. The lesion volume fraction in the corticospinal tracts was higher in secondary and primary progressive patients (mean = 3.6 ± 2.7% and 2.9 ± 2.4%), compared to relapsing-remitting patients (1.6 ± 2.1%, both P < 0.0001). Voxel-wise analyses confirmed that lesion frequency was higher in progressive compared to relapsing-remitting patients, with significant bilateral clusters in the spinal cord corticospinal tracts (P < 0.01). The baseline Expanded Disability Status Scale score was associated with lesion volume fraction within the brain (r = 0.31, P < 0.0001), brainstem (r = 0.45, P < 0.0001) and spinal cord (r = 0.57, P < 0.0001) corticospinal tracts. The spinal cord corticospinal tracts lesion volume fraction remained the strongest factor in the multiple linear regression model, independently from cord atrophy. Baseline spinal cord corticospinal tracts lesion volume fraction was also associated with disability progression at 2-year follow-up (P = 0.003). Our results suggest a cumulative effect of lesions within the corticospinal tracts along the brain, brainstem and spinal cord portions to explain physical disability in multiple sclerosis patients, with a predominant impact of intramedullary lesions.


Assuntos
Encéfalo/patologia , Esclerose Múltipla/patologia , Tratos Piramidais/patologia , Adulto , Medula Cervical/patologia , Avaliação da Deficiência , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
2.
Front Med (Lausanne) ; 8: 740248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805206

RESUMO

Over the last 10 years, the number of approved disease modifying drugs acting on the focal inflammatory process in Multiple Sclerosis (MS) has increased from 3 to 10. This wide choice offers the opportunity of a personalized medicine with the objective of no clinical and radiological activity for each patient. This new paradigm requires the optimization of the detection of new FLAIR lesions on longitudinal MRI. In this paper, we describe a complete workflow-that we developed, implemented, deployed, and evaluated-to facilitate the monitoring of new FLAIR lesions on longitudinal MRI of MS patients. This workflow has been designed to be usable by both hospital and private neurologists and radiologists in France. It consists of three main components: (i) a software component that allows for automated and secured anonymization and transfer of MRI data from the clinical Picture Archive and Communication System (PACS) to a processing server (and vice-versa); (ii) a fully automated segmentation core that enables detection of focal longitudinal changes in patients from T1-weighted, T2-weighted and FLAIR brain MRI scans, and (iii) a dedicated web viewer that provides an intuitive visualization of new lesions to radiologists and neurologists. We first present these different components. Then, we evaluate the workflow on 54 pairs of longitudinal MRI scans that were analyzed by 3 experts (1 neuroradiologist, 1 radiologist, and 1 neurologist) with and without the proposed workflow. We show that our workflow provided a valuable aid to clinicians in detecting new MS lesions both in terms of accuracy (mean number of detected lesions per patient and per expert 1.8 without the workflow vs. 2.3 with the workflow, p = 5.10-4) and of time dedicated by the experts (mean time difference 2'45″, p = 10-4). This increase in the number of detected lesions has implications in the classification of MS patients as stable or active, even for the most experienced neuroradiologist (mean sensitivity was 0.74 without the workflow and 0.90 with the workflow, p-value for no difference = 0.003). It therefore has potential consequences on the therapeutic management of MS patients.

3.
J Neurol ; 266(9): 2294-2303, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31175433

RESUMO

BACKGROUND: In patients with MS, the effect of structural damage to the corticospinal tract (CST) has been separately evaluated in the brain and spinal cord (SC), even though a cumulative impact is suspected. OBJECTIVE: To evaluate CST damages on both the cortex and cervical SC, and examine their relative associations with motor function, measured both clinically and by electrophysiology. METHODS: We included 43 patients with early relapsing-remitting MS. Lesions were manually segmented on SC (axial T2*) and brain (3D FLAIR) scans. The CST was automatically segmented using an atlas (SC) or tractography (brain). Lesion volume fractions and diffusion parameters were calculated for SC, brain and CST. Central motor conduction time (CMCT) and triple stimulation technique amplitude ratio were measured for 42 upper limbs, from 22 patients. RESULTS: Mean lesion volume fractions were 5.2% in the SC portion of the CST and 0.9% in the brain portion. We did not find a significant correlation between brain and SC lesion volume fraction (r = 0.06, p = 0.68). The pyramidal EDSS score and CMCT were both significantly correlated with the lesion fraction in the SC CST (r = 0.39, p = 0.01 and r = 0.33, p = 0.03), but not in the brain CST. CONCLUSION: Our results highlight the major contribution of SC lesions to CST damage and motor function abnormalities.


Assuntos
Encéfalo/diagnóstico por imagem , Medula Cervical/diagnóstico por imagem , Potencial Evocado Motor/fisiologia , Destreza Motora/fisiologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Adulto , Encéfalo/fisiologia , Medula Cervical/fisiologia , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/tendências , Masculino , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Tratos Piramidais/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA