Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35344038

RESUMO

Cancer continues to be a leading cause of death worldwide, largely due to metastases and cachexia. It is a complex disease that is commonly associated with a variety of comorbidities. With global increases in ageing populations and obesity, multimorbidity is a rapidly growing clinical issue in the context of cancer. Cancer is also genetically heterogeneous, with a tumour's unique profile determining its incidence of metastasis, degree of cachexia and response to therapeutics. These complexities of human cancer are difficult to replicate in animal models and are, in part, responsible for the failures in translational cancer research. In this Perspective, we highlight the fruit fly, Drosophila melanogaster, as a powerful model organism to investigate multimorbidity and tumour diversity. We also highlight how harnessing these complexities in Drosophila can, potentially, enhance cancer research and advance therapeutic discoveries.


Assuntos
Drosophila , Neoplasias , Animais , Caquexia , Modelos Animais de Doenças , Drosophila melanogaster/fisiologia , Neoplasias/complicações
2.
Autophagy ; 15(2): 368-371, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30153072

RESUMO

In its third edition, the Vancouver Autophagy Symposium presented a platform for vibrant discussion on the differential roles of macroautophagy/autophagy in disease. This one-day symposium was held at the BC Cancer Research Centre in Vancouver, BC, bringing together experts in cell biology, protein biochemistry and medicinal chemistry across several different disease models and model organisms. The Vancouver Autophagy Symposium featured 2 keynote speakers that are well known for their seminal contributions to autophagy research, Dr. David Rubinsztein (Cambridge Institute for Medical Research) and Dr. Kay F. Macleod (University of Chicago). Key discussions included the context-dependent roles and mechanisms of dysregulation of autophagy in diseases and the corresponding need to consider context-dependent autophagy modulation strategies. Additional highlights included the differential roles of bulk autophagy versus selective autophagy, novel autophagy regulators, and emerging chemical tools to study autophagy inhibition. Interdisciplinary discussions focused on addressing questions such as which stage of disease to target, which type of autophagy to target and which component to target for autophagy modulation. Abbreviations: AD: Alzheimer disease; AMFR/Gp78: autocrine motility factor receptor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CML: chronic myeloid leukemia; CVB3: coxsackievirus B3; DRPLA: dentatorubral-pallidoluysian atrophy; ER: endoplasmic reticulum; ERAD: ER-associated degradation; FA: focal adhesion; HCQ: hydroxychloroquine; HD: Huntingtin disease; HIF1A/Hif1α: hypoxia inducible factor 1 subunit alpha; HTT: huntingtin; IM: imatinib mesylate; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; NBR1: neighbour of BRCA1; OGA: O-GlcNAcase; PDAC: pancreatic ductal adenocarcinoma; PLEKHM1: pleckstrin homology and RUN domain containing M1; polyQ: poly-glutamine; ROS: reactive oxygen species; RP: retinitis pigmentosa; SNAP29: synaptosome associated protein 29; SPCA3: spinocerebellar ataxia type 3; TNBC: triple-negative breast cancer.


Assuntos
Autofagia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Humanos , Mitofagia/efeitos dos fármacos , Neoplasias/patologia , Proteínas/toxicidade
3.
Autophagy ; 13(9): 1573-1589, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28806103

RESUMO

The 2 main degradative pathways that contribute to proteostasis are the ubiquitin-proteasome system and autophagy but how they are molecularly coordinated is not well understood. Here, we demonstrate an essential role for an effector caspase in the activation of compensatory autophagy when proteasomal activity is compromised. Functional loss of Hsp83, the Drosophila ortholog of human HSP90 (heat shock protein 90), resulted in reduced proteasomal activity and elevated levels of the effector caspase Dcp-1. Surprisingly, genetic analyses showed that the caspase was not required for cell death in this context, but instead was essential for the ensuing compensatory autophagy, female fertility, and organism viability. The zymogen pro-Dcp-1 was found to interact with Hsp83 and undergo proteasomal regulation in an Hsp83-dependent manner. Our work not only reveals unappreciated roles for Hsp83 in proteasomal activity and regulation of Dcp-1, but identifies an effector caspase as a key regulatory factor for sustaining adaptation to cell stress in vivo.


Assuntos
Autofagia , Caspases/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação para Cima , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Feminino , Fertilidade , Marcação In Situ das Extremidades Cortadas , Larva/metabolismo , Espectrometria de Massas , Proteínas Mutantes/metabolismo , Mutação/genética , Óvulo/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteômica , Interferência de RNA
4.
Oncotarget ; 7(41): 66970-66988, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27556700

RESUMO

Autophagy, a lysosome-mediated degradation and recycling process, functions in advanced malignancies to promote cancer cell survival and contribute to cancer progression and drug resistance. While various autophagy inhibition strategies are under investigation for cancer treatment, corresponding patient selection criteria for these autophagy inhibitors need to be developed. Due to its central roles in the autophagy process, the cysteine protease ATG4B is one of the autophagy proteins being pursued as a potential therapeutic target. In this study, we investigated the expression of ATG4B in breast cancer, a heterogeneous disease comprised of several molecular subtypes. We examined a panel of breast cancer cell lines, xenograft tumors, and breast cancer patient specimens for the protein expression of ATG4B, and found a positive association between HER2 and ATG4B protein expression. We showed that HER2-positive cells, but not HER2-negative breast cancer cells, require ATG4B to survive under stress. In HER2-positive cells, cytoprotective autophagy was dependent on ATG4B under both starvation and HER2 inhibition conditions. Combined knockdown of ATG4B and HER2 by siRNA resulted in a significant decrease in cell viability, and the combination of ATG4B knockdown with trastuzumab resulted in a greater reduction in cell viability compared to trastuzumab treatment alone, in both trastuzumab-sensitive and -resistant HER2 overexpressing breast cancer cells. Together these results demonstrate a novel association of ATG4B positive expression with HER2 positive breast cancers and indicate that this subtype is suitable for emerging ATG4B inhibition strategies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Relacionadas à Autofagia/biossíntese , Autofagia/fisiologia , Neoplasias da Mama/metabolismo , Cisteína Endopeptidases/biossíntese , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Adulto , Idoso , Animais , Autofagia/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Xenoenxertos , Humanos , Camundongos , Pessoa de Meia-Idade , Receptor ErbB-2/biossíntese , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
G3 (Bethesda) ; 6(10): 3409-3418, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27520959

RESUMO

With rare exception, ciliated cells entering mitosis lose their cilia, thereby freeing basal bodies to serve as centrosomes in the formation of high-fidelity mitotic spindles. Cilia can be lost by shedding or disassembly, but either way, it appears that the final release may be via a coordinated severing of the nine axonemal outer doublet microtubules linking the basal body to the ciliary transition zone. Little is known about the mechanism or regulation of this important process. The stress-induced deflagellation response of Chlamydomonas provides a basis to identifying key players in axonemal severing. In an earlier screen we uncovered multiple alleles for each of three deflagellation genes, ADF1, FA1, and FA2 Products of the two FA genes localize to the site of axonemal severing and encode a scaffolding protein and a member of the NIMA-related family of ciliary-cell cycle kinases. The identity of the ADF1 gene remained elusive. Here, we report a new screen using a mutagenesis that yields point mutations in Chlamydomonas, an enhanced screening methodology, and whole genome sequencing. We isolated numerous new alleles of the three known genes, and one or two alleles each of at least four new genes. We identify ADF1 as a TRP ion channel, which we suggest may reside at the flagellar transition zone.


Assuntos
Chlamydomonas/genética , Flagelos/genética , Genoma de Planta , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Canais de Potencial de Receptor Transitório/genética , Chlamydomonas reinhardtii/genética , Mapeamento Cromossômico , Análise Mutacional de DNA , Ordem dos Genes , Testes Genéticos , Genômica/métodos , Filogenia , Recombinação Genética , Canais de Potencial de Receptor Transitório/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA