Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Chem Phys ; 158(3): 035101, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681650

RESUMO

DNA is a re-configurable, biological information-storage unit, and much remains to be learned about its heterogeneous structural dynamics. For example, while it is known that molecular dyes templated onto DNA exhibit increased photostability, the mechanism by which the structural dynamics of DNA affect the dye photophysics remains unknown. Here, we use femtosecond, two-dimensional electronic spectroscopy measurements of a cyanine dye, Cy5, to probe local conformations in samples of single-stranded DNA (ssDNA-Cy5), double-stranded DNA (dsDNA-Cy5), and Holliday junction DNA (HJ-DNA-Cy5). A line shape analysis of the 2D spectra reveals a strong excitation-emission correlation present in only the dsDNA-Cy5 complex, which is a signature of inhomogeneous broadening. Molecular dynamics simulations support the conclusion that this inhomogeneous broadening arises from a nearly degenerate conformer found only in the dsDNA-Cy5 complex. These insights will support future studies on DNA's structural heterogeneity.


Assuntos
Corantes Fluorescentes , Quinolinas , Corantes Fluorescentes/química , DNA/química , Carbocianinas/química , DNA de Cadeia Simples
2.
Langmuir ; 38(18): 5439-5453, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35443130

RESUMO

Enhancing the separation of rare-earth elements (REEs) from gangue materials in mined ores requires an understanding of the fundamental interactions driving the adsorption of collector ligands onto mineral interfaces. In this work, we examine five functionalized hydroxamic acid ligands as potential collectors for the REE-containing bastnäsite mineral in froth flotation using density functional theory calculations and a suite of surface-sensitive analytical spectroscopies. These include vibrational sum frequency generation, attenuated total reflectance Fourier transform infrared, Raman, and X-ray photoelectron spectroscopies. Differences in the chemical makeup of these ligands on well-defined bastnäsite and calcite surfaces allow for a systematic relationship connecting the structure to adsorption activity to be framed in the context of interfacial molecular recognition. We show how the intramolecular hydrogen bonding of adsorbed ligands requires the inclusion of explicit water solvent molecules to correctly map energetic and structural trends measured by experiments. We anticipate that the results and insights from this work will motivate and inform the design of improved flotation collectors for REE ores.

3.
Phys Chem Chem Phys ; 24(2): 1202, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919110

RESUMO

Correction for 'Interfacial acidity on the strontium titanate surface: a scaling paradigm and the role of the hydrogen bond' by Robert C. Chapleski, Jr. et al., Phys. Chem. Chem. Phys., 2021, 23, 23478-23485, DOI: 10.1039/D1CP03587H.

4.
Langmuir ; 37(1): 211-218, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372789

RESUMO

Polymer interfaces are key to a range of applications including membranes for chemical separations, hydrophobic coatings, and passivating layers for antifouling. While important, challenges remain in probing the interfacial monolayer where the molecular ordering and orientation can change depending on the chemical makeup or processing conditions. In this work, we leverage surface specific vibrational sum frequency generation (SFG) and the associated dependence on molecular symmetry to elucidate the ordering and orientations of key functional groups for poly(2,2,2-trifluoroethyl methacrylate) bottlebrush polymers and their linear polymer analogues. These measurements were framed by atomistic molecular dynamic simulations to provide a complementary physical picture of the gas-polymer interface. Simulations and SFG measurements show that methacrylate backbones are buried beneath a layer of trifluoroethyl containing side groups that result in structurally similar interfaces regardless of the polymer molecular weight or architecture. The average orientational angles of the trifluoroethyl containing side groups differ depending on polymer linear and bottlebrush architectures, suggesting that the surface groups can reorient via available rotational degrees of freedom. Results show that the surfaces of the bottlebrush and linear polymer samples do not strongly depend on molecular weight or architecture. As such, one cannot rely on increasing the molecular weight or altering the architecture to tune surface properties. This insight into the polymer interfacial structure is expected to advance the design of new material interfaces with tailored chemical/functional properties.

5.
Phys Chem Chem Phys ; 23(41): 23478-23485, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34569563

RESUMO

A fundamental understanding of acidity at an interface, as mediated by structure and molecule-surface interactions, is essential to elucidate the mechanisms of a range of chemical transformations. While the strength of an acid in homogeneous gas and solution phases is conceptually well understood, acid-base chemistry at heterogeneous interfaces is notoriously more complicated. Using density functional theory and nonlinear vibrational spectroscopy, we present a method to determine the interfacial Brønsted-Lowry acidity of aliphatic alcohols adsorbed on the (100) surface of the model perovskite, strontium titanate. While shorter and less branched alkanols are known to be less acidic in the gas phase and more acidic in solution, here we show that shorter alcohols are less acidic whereas less substituted alkanols are more acidic at the gas-oxide interface. Hydrogen bonding plays a critical role in defining acidity, whereas structure-acidity relationships are dominated by van der Waals interactions between the alcohol and the surface.

6.
J Am Chem Soc ; 142(1): 290-299, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31801348

RESUMO

Polymer-stabilized liquid/liquid interfaces are an important and growing class of bioinspired materials that combine the structural and functional capabilities of advanced synthetic materials with naturally evolved biophysical systems. These platforms have the potential to serve as selective membranes for chemical separations and molecular sequencers and to even mimic neuromorphic computing elements. Despite the diversity in function, basic insight into the assembly of well-defined amphiphilic polymers to form functional structures remains elusive, which hinders the continued development of these technologies. In this work, we provide new mechanistic insight into the assembly of an amphiphilic polymer-stabilized oil/aqueous interface, in which the headgroups consist of positively charged methylimidazolium ionic liquids, and the tails are short, monodisperse oligodimethylsiloxanes covalently attached to the headgroups. We demonstrate using vibrational sum frequency generation spectroscopy and pendant drop tensiometery that the composition of the bulk aqueous phase, particularly the ionic strength, dictates the kinetics and structures of the amphiphiles in the organic phase as they decorate the interface. These results show that H-bonding and electrostatic interactions taking place in the aqueous phase bias the grafted oligomer conformations that are adopted in the neighboring oil phase. The kinetics of self-assembly were ionic strength dependent and found to be surprisingly slow, being composed of distinct regimes where molecules adsorb and reorient on relatively fast time scales, but where conformational sampling and frustrated packing takes place over longer time scales. These results set the stage for understanding related chemical phenomena of bioinspired materials in diverse technological and fundamental scientific fields and provide a solid physical foundation on which to design new functional interfaces.


Assuntos
Lipídeos/química , Polímeros/química , Fenômenos Biofísicos , Ligação de Hidrogênio , Cinética , Estrutura Molecular , Concentração Osmolar , Eletricidade Estática , Tensão Superficial
7.
Anal Chem ; 90(7): 4461-4469, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29521493

RESUMO

The total number of data points required for image generation in Raman microscopy was greatly reduced using sparse sampling strategies, in which the preceding set of measurements informed the next most information-rich sampling location. Using this approach, chemical images of pharmaceutical materials were obtained with >99% accuracy from 15.8% sampling, representing an ∼6-fold reduction in measurement time relative to full field of view rastering with comparable image quality. This supervised learning approach to dynamic sampling (SLADS) has the distinct advantage of being directly compatible with standard confocal Raman instrumentation. Furthermore, SLADS is not limited to Raman imaging, potentially providing time-savings in image reconstruction whenever the single-pixel measurement time is the limiting factor in image generation.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Confocal/métodos , Análise Espectral Raman/métodos , Algoritmos
8.
Opt Lett ; 43(9): 2038-2041, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714740

RESUMO

We describe a new approach that expands the utility of vibrational sum-frequency generation (vSFG) spectroscopy using shaped near-infrared (NIR) laser pulses. We demonstrate that arbitrary pulse shapes can be specified to match experimental requirements without the need for changes to the optical alignment. In this way, narrowband NIR pulses as long as 5.75 ps are readily generated, with a spectral resolution of about 2.5 cm-1, an improvement of approximately a factor of 3 compared to a typical vSFG system. Moreover, the utility of having complete control over the NIR pulse characteristics is demonstrated through nonresonant background suppression from a metallic substrate by generating an etalon waveform in the pulse shaper. The flexibility afforded by switching between arbitrary NIR waveforms at the sample position with the same instrument geometry expands the type of samples that can be studied without extensive modifications to existing apparatuses or large investments in specialty optics.

9.
Anal Chem ; 89(11): 5958-5965, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481538

RESUMO

Second harmonic generation (SHG) was integrated with Raman spectroscopy for the analysis of pharmaceutical materials. Particulate formulations of clopidogrel bisulfate were prepared in two crystal forms (Form I and Form II). Image analysis approaches enable automated identification of particles by bright field imaging, followed by classification by SHG. Quantitative SHG microscopy enabled discrimination of crystal form on a per particle basis with 99.95% confidence in a total measurement time of ∼10 ms per particle. Complementary measurements by Raman and synchrotron XRD are in excellent agreement with the classifications made by SHG, with measurement times of ∼1 min and several seconds per particle, respectively. Coupling these capabilities with at-line monitoring may enable real-time feedback for reaction monitoring during pharmaceutical production to favor the more bioavailable but metastable Form I with limits of detection in the ppm regime.

10.
J Synchrotron Radiat ; 24(Pt 1): 188-195, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009558

RESUMO

A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.


Assuntos
Cristalografia por Raios X , Proteínas/química , Difração de Raios X , Cristalização , Substâncias Macromoleculares , Síncrotrons
11.
Anal Chem ; 88(7): 3853-63, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26929984

RESUMO

A microscopy approach is developed for quantifying second harmonic generation (SHG) activity of powders that largely decouples linear and nonlinear optical interactions. Decoupling the linear and nonlinear optical effects provides a means to independently evaluate and optimize the role of each in crystal engineering efforts and facilitates direct comparisons between experimental and computational predictions of lattice hyperpolarizabilities. In this respect, the microscopy-based approach nicely complements well-established Kurtz-Perry ( J. Appl. Phys. 1968 , 39 , 3798 ) and related methods, in which collimated sources are used for powders analysis. Using a focused fundamental beam places a controllable upper bound on the interaction length, given by the depth of field. Because measurements are performed on a per-particle basis, crystal size-dependent trends can be recovered from a single powdered sample. An analytical model that includes scattering losses of a focused Gaussian beam reliably predicted several experimental observations. Specifically, the measured scattering length for SHG was in excellent agreement with the value predicted based on the particle size distribution. Additionally, histograms of the SHG intensities as functions of particle size and orientation agreed nicely with predictions from the model.

12.
J Am Chem Soc ; 136(6): 2404-12, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24451055

RESUMO

Second harmonic generation (SHG) microscopy measurements indicate that inkjet-printed racemic solutions of amino acids can produce nanocrystals trapped in metastable polymorph forms upon rapid solvent evaporation. Polymorphism impacts the composition, distribution, and physico-kinetic properties of organic solids, with energetic arguments favoring the most stable polymorph. In this study, unfavored noncentrosymmetric crystal forms were observed by SHG microscopy. Polarization-dependent SHG measurement and synchrotron X-ray microdiffraction analysis of individual printed drops are consistent with formation of homochiral crystal production. Fundamentally, these results provide evidence supporting the ubiquity of Ostwald's Rule of Stages, describing the hypothesized transitioning of crystals between metastable polymorphic forms in the early stages of crystal formation. Practically, the presence of homochiral metastable forms has implications on chiral resolution and on solid form preparations relying on rapid solvent evaporation.


Assuntos
Aminoácidos/química , Cristalização , Estabilidade de Medicamentos , Cinética , Microscopia Confocal , Estereoisomerismo , Termodinâmica
13.
J Phys Chem A ; 118(24): 4301-8, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24831741

RESUMO

A simple model is presented for interpreting the presence of substantial second harmonic generation (SHG) activity from assemblies of centrosymmetric molecular building blocks. Using butadiene as a computationally tractable centrosymmetric model system, time-dependent Hartree-Fock calculations of the nonlinear polarizability of butadiene dimer were well-described through exciton coupling arguments based on the electronic structure of the monomer and the relative orientation between the monomers within the dimer. Experimental studies of the centrosymmetric molecule 2,6-di-tert-butylanthraquinone suggest the formation of a combination of SHG-active and SHG-inactive crystal forms. The structure for the centrosymmetric form is known, serving as a negative control for the model, while the presence of an additional SHG-active metastable form is consistent with predictions of the model for alternative molecular packing configurations.


Assuntos
Antraquinonas/química , Butadienos/química , Modelos Químicos , Simulação por Computador , Dimerização , Teoria Quântica , Termodinâmica
15.
J Phys Chem B ; 126(11): 2316-2323, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35289625

RESUMO

Molecular orientation plays a pivotal role in defining the functionality and chemistry of interfaces, yet accurate measurements probing this important feature are few, due, in part, to technical and analytical limitations in extracting information from molecular monolayers. For example, buried liquid/liquid interfaces, where a complex and poorly understood balance of inter- and intramolecular interactions impart structural constraints that facilitate the formation of supramolecular assemblies capable of new functions, are difficult to probe experimentally. Here, we use vibrational sum-frequency generation spectroscopy, numerical polarization analysis, and atomistic molecular dynamics simulations to probe molecular orientations at buried oil/aqueous interfaces decorated with amphiphilic oligomers. We show that the orientation of self-assembled oligomers changes upon the addition of salts in the aqueous phase. The evolution of these structures can be described by competitive ion effects in the aqueous phase altering the orientations of the tails extending into the oil phase. These specific anionic effects occur via interfacial ion pairing and associated changes in interfacial solvation and hydrogen-bonding networks. These findings provide more quantitative insight into orientational changes encountered during self-assembly and pave the way for the design of functional interfaces for chemical separations, neuromorphic computing applications, and related biomimetic systems.


Assuntos
Simulação de Dinâmica Molecular , Água , Ligação de Hidrogênio , Sais , Análise Espectral/métodos , Água/química
16.
J Phys Chem Lett ; 13(12): 2782-2791, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35319215

RESUMO

Molecular excitons, which propagate spatially via electronic energy transfer, are central to numerous applications including light harvesting, organic optoelectronics, and nanoscale computing; they may also benefit applications such as photothermal therapy and photoacoustic imaging through the local generation of heat via rapid excited-state quenching. Here we show how to tune between energy transfer and quenching for heterodimers of the same pair of cyanine dyes by altering their spatial configuration on a DNA template. We assemble "transverse" and "adjacent" heterodimers of Cy5 and Cy5.5 using DNA Holliday junctions. We find that the transverse heterodimers exhibit optical properties consistent with excitonically interacting dyes and fluorescence quenching, while the adjacent heterodimers exhibit optical properties consistent with nonexcitonically interacting dyes and disproportionately large Cy5.5 emission, suggestive of energy transfer between dyes. We use transient absorption spectroscopy to show that quenching in the transverse heterodimer occurs via rapid nonradiative decay to the ground state (∼31 ps) and that in the adjacent heterodimer rapid energy transfer from Cy5 to Cy5.5 (∼420 fs) is followed by Cy5.5 excited-state relaxation (∼700 ps). Accessing such drastically different photophysics, which may be tuned on demand for different target applications, highlights the utility of DNA as a template for dye aggregation.


Assuntos
DNA , Corantes Fluorescentes , DNA/química , Replicação do DNA , Transferência de Energia , Corantes Fluorescentes/química , Análise Espectral
17.
J Phys Chem C Nanomater Interfaces ; 126(40): 17164-17175, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36268205

RESUMO

Molecular excitons are useful for applications in light harvesting, organic optoelectronics, and nanoscale computing. Electronic energy transfer (EET) is a process central to the function of devices based on molecular excitons. Achieving EET with a high quantum efficiency is a common obstacle to excitonic devices, often owing to the lack of donor and acceptor molecules that exhibit favorable spectral overlap. EET quantum efficiencies may be substantially improved through the use of heteroaggregates-aggregates of chemically distinct dyes-rather than individual dyes as energy relay units. However, controlling the assembly of heteroaggregates remains a significant challenge. Here, we use DNA Holliday junctions to assemble homo- and heterotetramer aggregates of the prototypical cyanine dyes Cy5 and Cy5.5. In addition to permitting control over the number of dyes within an aggregate, DNA-templated assembly confers control over aggregate composition, i.e., the ratio of constituent Cy5 and Cy5.5 dyes. By varying the ratio of Cy5 and Cy5.5, we show that the most intense absorption feature of the resulting tetramer can be shifted in energy over a range of almost 200 meV (1600 cm-1). All tetramers pack in the form of H-aggregates and exhibit quenched emission and drastically reduced excited-state lifetimes compared to the monomeric dyes. We apply a purely electronic exciton theory model to describe the observed progression of the absorption spectra. This model agrees with both the measured data and a more sophisticated vibronic model of the absorption and circular dichroism spectra, indicating that Cy5 and Cy5.5 heteroaggregates are largely described by molecular exciton theory. Finally, we extend the purely electronic exciton model to describe an idealized J-aggregate based on Förster resonance energy transfer (FRET) and discuss the potential advantages of such a device over traditional FRET relays.

18.
ACS Appl Mater Interfaces ; 13(28): 33734-33743, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34235915

RESUMO

Liquid/liquid interfaces play a central role in scientific fields ranging from nanomaterial synthesis and soft matter electronics to nuclear waste remediation and chemical separations. This diversity of functions arises from an interface's ability to respond to changing conditions in its neighboring bulk phases. Understanding what drives this interfacial flexibility can provide novel avenues for designing new functional interfaces. However, limiting this progress is an inadequate understanding of the subtle intermolecular and interphase interactions taking place at the molecular level. Here, we use surface-specific vibrational sum frequency generation spectroscopy combined with atomistic molecular dynamics simulations to investigate the self-assembly and structure of model ionic oligomers consisting of an oligodimethylsiloxane (ODMS) tail covalently attached to a positively charged methyl imidazolium (MIM+) head group at buried oil/aqueous interfaces. We show how the presence of seemingly innocuous salts can impart dramatic changes to the ODMS tail conformations in the oil phase via specific ion effects and ion-pairing interactions taking place in the aqueous phase. These specific ion interactions are shown to drive enhanced amphiphile adsorption, induce morphological changes, and disrupt emergent hydrogen-bonding structures at the interface. Tuning these interactions allows for independent control over the oligomer structure in the oil phase versus interfacial population changes and represents key mechanistic insight that is needed to control chemical reactions at liquid/liquid interfaces.

19.
Nat Commun ; 12(1): 5144, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446713

RESUMO

Binder Jet Additive Manufacturing (BJAM) is a versatile AM technique that can form parts from a variety of powdered materials including metals, ceramics, and polymers. BJAM utilizes inkjet printing to selectively bind these powder particles together to form complex geometries. Adoption of BJAM has been limited due to its inability to form strong green parts using conventional binders. We report the discovery of a versatile polyethyleneimine (PEI) binder for silica sand that doubled the flexural strength of parts to 6.28 MPa compared with that of the conventional binder, making it stronger than unreinforced concrete (~4.5 MPa) in flexural loading. Furthermore, we demonstrate that PEI in the printed parts can be reacted with ethyl cyanoacrylate through a secondary infiltration, resulting in an increase in flexural strength to 52.7 MPa. The strong printed parts coupled with the ability for sacrificial washout presents potential to revolutionize AM in various applications including construction and tooling.

20.
ACS Appl Mater Interfaces ; 12(28): 32119-32130, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551500

RESUMO

Chemical separations, particularly liquid extractions, are pervasive in academic and industrial laboratories, yet a mechanistic understanding of the events governing their function are obscured by interfacial phenomena that are notoriously difficult to measure. In this work, we investigate the fundamental steps of ligand self-assembly as driven by changes in the interfacial H-bonding network using vibrational sum frequency generation. Our results show how the bulk pH modulates the interfacial structure of extractants at the buried oil/aqueous interface via the formation of unique H-bonding networks that order and bridge ligands to produce self-assembled aggregates. These extended H-bonded structures are key to the subsequent extraction of Co2+ from the aqueous phase in promoting micelle formation and subsequent ejection of the said micelle into the oil phase. The combination of static and time-resolved measurements reveals the events underlying complexities of liquid extractions at high [Co2+]:[ligand] ratios by showing an evolution of interfacially assembled structures that are readily tuned on a chemical basis by altering the compositions of the aqueous phase. The results of this work point to new principles to design-applied separations through the manipulation of surface charge, electrostatic screening, and the associated H-bonding networks that arise at the interface to facilitate organization and subsequent extraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA