Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(26): e2121174119, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727969

RESUMO

The carbon-neutral synthesis of syngas from CO2 and H2O powered by solar energy holds grand promise for solving critical issues such as global warming and the energy crisis. Here we report photochemical reduction of CO2 with H2O into syngas using core/shell Au@Cr2O3 dual cocatalyst-decorated multistacked InGaN/GaN nanowires (NWs) with sunlight as the only energy input. First-principle density functional theory calculations revealed that Au and Cr2O3 are synergetic in deforming the linear CO2 molecule to a bent state with an O-C-O angle of 116.5°, thus significantly reducing the energy barrier of CO2RR compared with that over a single component of Au or Cr2O3. Hydrogen evolution reaction was promoted by the same cocatalyst simultaneously. By combining the cooperative catalytic properties of Au@Cr2O3 with the distinguished optoelectronic virtues of the multistacked InGaN NW semiconductor, the developed photocatalyst demonstrated high syngas activity of 1.08 mol/gcat/h with widely tunable H2/CO ratios between 1.6 and 9.2 under concentrated solar light illumination. Nearly stoichiometric oxygen was evolved from water splitting at a rate of 0.57 mol/gcat/h, and isotopic testing confirmed that syngas originated from CO2RR. The solar-to-syngas energy efficiency approached 0.89% during overall CO2 reduction coupled with water splitting. The work paves a way for carbon-neutral synthesis of syngas with the sole inputs of CO2, H2O, and solar light.

2.
Adv Mater ; 28(38): 8388-8397, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27456856

RESUMO

The atomic-scale origin of the unusually high performance and long-term stability of wurtzite p-GaN oriented nanowire arrays is revealed. Nitrogen termination of both the polar (0001¯) top face and the nonpolar (101¯0) side faces of the nanowires is essential for long-term stability and high efficiency. Such a distinct atomic configuration ensures not only stability against (photo) oxidation in air and in water/electrolyte but, as importantly, also provides the necessary overall reverse crystal polarization needed for efficient hole extraction in p-GaN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA