Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38940842

RESUMO

PURPOSE: Tumour perfusion is a nutrient-agnostic biomarker for cancer metabolic rate. Use of tumour perfusion for cancer growth assessment has been limited by complicated image acquisition, image analysis and limited field-of-view scanners. Long axial field-of-view (LAFOV) PET scan using [15O]H2O, allows quantitative assessment of whole-body tumour perfusion. We created a tool for automated creation of quantitative parametric whole-body tumour perfusion images in metastatic cancer. METHODS: Ten metastatic prostate cancer patients underwent dynamic LAFOV [15O]H2O PET (Siemens, Quadra) followed by [18F]PSMA-1007 PET. Perfusion was measured as [15O]H2O K1 (mL/min/mL) with a single-tissue compartment model and an automatically captured cardiac image-derived input function. Parametric perfusion images were automatically calculated using the basis-function method with initial voxel-wise delay estimation and a leading-edge approach. Subsequently, perfusion of volumes-of-interest (VOI) can be directly extracted from the parametric images. We used a [18F]PSMA-1007 SUV 4 fixed threshold for tumour delineation and transferred these VOIs to the perfusion map. RESULTS: For 8 primary tumours, 64 lymph node metastases, and 85 bone metastases, median tumour perfusion were 0.19 (0.15-0.27) mL/min/mL, 0.16 (0.13-0.27) mL/min/mL, and 0.26 (0.21-0.39), respectively. The correlation between calculated perfusion from time-activity-curves and parametric images was excellent (r = 0.99, p < 0.0001). CONCLUSION: LAFOV PET imaging using [15O]H2O enables truly quantitative parametric images of whole-body tumour perfusion, a potential biomarker for guiding personalized treatment and monitoring treatment response.

2.
J Nucl Cardiol ; 30(6): 2736-2749, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37639181

RESUMO

BACKGROUND: Patient motion constitutes a limitation to 15O-water cardiac PET imaging. We examined the ability of image readers to detect and correct patient motion using simulated motion data and clinical patient scans. METHODS: Simulated data consisting of 16 motions applied to 10 motion-free scans were motion corrected using two approaches, pre-analysis and post-analysis for motion identification. Both approaches employed a manual frame-by-frame correction method. In addition, a clinical cohort was analyzed for assessment of prevalence and effect of motion and motion correction. RESULTS: Motion correction was performed on 94% (pre-analysis) and 64% (post-analysis) of the scans. Large motion artifacts were corrected in 91% (pre-analysis) and 74% (post-analysis) of scans. Artifacts in MBF were reduced in 56% (pre-analysis) and 58% (post-analysis) of the scans. The prevalence of motion in the clinical patient cohort (n = 762) was 10%. Motion correction altered exam interpretation in only 10 (1.3%) clinical patient exams. CONCLUSION: Frame-by-frame motion correction after visual inspection is useful in reducing motion artifacts in cardiac 15O-water PET. Reviewing the initial results (parametric images and polar maps) as part of the motion correction process, reduced erroneous corrections in motion-free scans. In a large clinical cohort, the impact of motion correction was limited to few patients.


Assuntos
Imagem de Perfusão do Miocárdio , Água , Humanos , Coração/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Movimento (Física) , Imagem de Perfusão do Miocárdio/métodos , Artefatos , Processamento de Imagem Assistida por Computador/métodos
3.
J Nucl Cardiol ; 29(2): 449-460, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-32676911

RESUMO

BACKGROUND: Selection of optimal tracer activity for 82Rb PET is based on a trade-off between necessary count-statistics in the late static phase and detector saturation in the early blood-pool phase. Administered tracer activity recommended in prescribing information differs substantially from recommendations in current literature. The present study examines the effect on both absolute myocardial blood flow (MBF), myocardial flow reserve (MFR) and relative myocardial perfusion imaging (MPI) of reducing dose. METHODS: Forty patients were scanned twice on a PMT-based PET/CT (GE D690): At recommended activity (1110 MBq) and at either 740 or 370 MBq. MBF, MFR, total perfusion deficit (TPD) and ejection fractions (EF) were quantified. Results were compared using linear regression and Bland-Altman plots. RESULTS: Linear correlation between MBF at 1110 MBq at either reduced activity had an R2 > 0.98. A small bias (± 5%-9%) was observed with opposite signs for 1110/740 and 1110/370. Limits of agreement for MBF were larger for 1110/370. MFR had a lower linear correlation (R2 = 0.96), but wide limits of agreement especially for 1110/370. TPD and EF correlated well at 1110/740 (R2 = 0.96 and 0.99, respectively), but large scatter was observed for 1110/370. CONCLUSION: Reduction of the tracer activity to 740 MBq, significantly reduced dead-time correction factors, while still producing reliable static and gated images. However, despite large dead-time at 1110 MBq, no systematic bias on absolute MBF was observed compared to reduced activities.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária/fisiologia , Humanos , Imagem de Perfusão do Miocárdio/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Rubídio
4.
Diabetologia ; 62(7): 1251-1256, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30976851

RESUMO

AIMS/HYPOTHESIS: Metformin is the endorsed first-line glucose-lowering drug for treating patients with type 2 diabetes but despite more than 50 years of use, no consensus has been reached on its mechanisms of action. In this study, we investigated the glucose-lowering effects of metformin in individuals with type 2 diabetes and non-diabetic individuals. METHODS: We performed a randomised, placebo-controlled trial in 24 individuals with recent-onset type 2 diabetes (diabetes duration 50 [48] months) who had good glycaemic control (HbA1c 48 mmol/mmol [6.5%]). The studies were conducted at Aarhus University Hospital between 2013 and 2016. Participants were randomised to receive either metformin (2000 mg/day, n = 12, MET group) or placebo (n = 12, PLA group) for 90 days, using block randomisation set up by an unblinded pharmacist. Two participants withdrew from the study prior to completion and were replaced with two new participants receiving the same treatment. In addition, we recruited a group of non-diabetic individuals with similar age and BMI (n = 12, CONT group), who were all treated with 2000 mg metformin daily. Before and after treatment all individuals underwent studies of whole-body glucose metabolism by non-steady-state [3-3H]glucose kinetics, hyperinsulinaemic-euglycaemic clamping, indirect calorimetry, metabolomics, dual x-ray absorptiometry and muscle biopsies. The primary study endpoint was the effect of metformin treatment on lipid kinetics as well as glucose rate of disappearance (Rd) and endogenous glucose production (EGP). RESULTS: One participant from the CONT group withdrew due to intolerable gastrointestinal side-effects and was excluded from analysis. As expected, metformin treatment lowered fasting plasma glucose (FPG) in the MET group (~1.5 mmol/l, p < 0.01), whereas no effect was observed in the PLA and CONT groups. Body weight and composition did not change in any of the groups. In both of the metformin-treated groups (MET and CONT), basal glucose Rd, EGP and glucagon levels increased by ~30% (p < 0.05) whereas this was not the case in the PLA group. CONCLUSIONS/INTERPRETATION: Ninety days of metformin treatment resulted in similar increases in EGP and glucose Rd in individuals with recent-onset type 2 diabetes and in non-diabetic control individuals. These results challenge the existing paradigm that metformin primarily acts in the liver by inhibiting EGP, at least in individuals with type 2 diabetes of short duration and who have discretely affected glycaemic status. Whether metformin increases basal glucose Rd by facilitating glucose uptake in other tissues such as the intestines remains to be further clarified. TRIAL REGISTRATION: ClinicalTrials.gov NCT01729156 FUNDING: This study was supported by grants from The Danish Council for Independent Research | Medical Sciences, Aase Danielsen Fund, the Novo Nordisk Foundation, the Danish Diabetes Association and the Danish Diabetes Academy supported by the Novo Nordisk Foundation.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Humanos , Efeito Placebo
5.
Diabetes Obes Metab ; 20(6): 1435-1444, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29405635

RESUMO

AIMS: To explore whether the pre-clinical findings that metformin improves lipid metabolism, possibly through modulation of intrahepatic partitioning of fatty acids towards oxidation and away from re-esterification and resecretion as triglycerides (TGs), can be translated to a human setting. MATERIALS AND METHODS: We performed a 3-month randomized, placebo-controlled, parallel-group clinical trial in patients with type 2 diabetes (T2D; n = 24) and healthy controls (n = 12). Patients with T2D received either placebo (placebo group) or 1000 mg metformin twice daily (metformin group), while healthy subjects were all treated with metformin (control group). Hepatic fatty acid metabolism was measured by [11 C]palmitate positron-emission tomography, hepatic TG secretion and peripheral oxidation by ex vivo labelled [1-14 C]VLDL-TG and VLDL particle size by TG/apolipoprotein B ratio. Body composition was assessed by dual-energy X-ray and whole-body lipid oxidation by indirect calorimetry. RESULTS: Metformin treatment for 3 months produced the anticipated decrease in fasting plasma glucose (FPG) in the metformin group (FPG 7.9 ± 1.8 mM [study day 1] vs 6.4 ± 1.1 mM [study day 2]), whereas patients in the placebo group and healthy controls had similar FPG levels before and after the trial (mixed model group vs time interaction; P = .003); however, contrary to our hypothesis, metformin treatment did not affect hepatic lipid metabolism or peripheral oxidation. CONCLUSION: The observed beneficial effects on lipid metabolism during metformin treatment in humans appear to be secondary to long-term alterations in body composition or glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Idoso , Glicemia/metabolismo , Composição Corporal/fisiologia , Diabetes Mellitus Tipo 2/sangue , Esquema de Medicação , Ácidos Graxos não Esterificados/metabolismo , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Triglicerídeos/metabolismo
6.
Mol Imaging ; 16: 1536012117734485, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073808

RESUMO

INTRODUCTION: Despite the decades long use of [11C]palmitate positron emission tomography (PET)/computed tomography in basic metabolism studies, only personal communications regarding dosimetry and biodistribution data have been published. METHODS: Dosimetry and biodistribution studies were performed in 2 pigs and 2 healthy volunteers by whole-body [11C]palmitate PET scans. Metabolite studies were performed in 40 participants (healthy and with type 2 diabetes) under basal and hyperinsulinemic conditions. Metabolites were estimated using 2 approaches and subsequently compared: Indirect [11C]CO2 release and parent [11C]palmitate measured by a solid-phase extraction (SPE) method. Finally, myocardial fatty acid uptake was calculated in a patient cohort using input functions derived from individual metabolite correction compared with population-based metabolite correction. RESULTS: In humans, mean effective dose was 3.23 (0.02) µSv/MBq, with the liver and myocardium receiving the highest absorbed doses. Metabolite correction using only [11C]CO2 estimates underestimated the fraction of metabolites in studies lasting more than 20 minutes. Population-based metabolite correction showed excellent correlation with individual metabolite correction in the cardiac PET validation cohort. CONCLUSION: First, mean effective dose of [11C]palmitate is 3.23 (0.02) µSv/MBq in humans allowing multiple scans using ∼300 MBq [11C]palmitate, and secondly, population-based metabolite correction compares well with individual correction.


Assuntos
Radioisótopos de Carbono/metabolismo , Metaboloma , Palmitatos/metabolismo , Tomografia por Emissão de Pósitrons , Radiometria , Compostos Radiofarmacêuticos/química , Animais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Masculino , Pessoa de Meia-Idade , Extração em Fase Sólida , Sus scrofa , Distribuição Tecidual
7.
EJNMMI Res ; 14(1): 11, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294730

RESUMO

BACKGROUND: [15O]H2O PET/CT allows noninvasive quantification of tissue perfusion and can potentially play a future role in the diagnosis and treatment of peripheral artery disease. We aimed to evaluate the reliability of dynamic [15O]H2O PET imaging for measuring lower extremity skeletal muscle perfusion. Ten healthy participants underwent same-day test-retest study with six dynamic [15O]H2O PET scans of lower legs and feet. Manual volume-of-interests were drawn in skeletal muscles, and PET time activity curves were extracted. K1 values (mL/min/100 mL) were estimated using a single-tissue compartment model (1TCM), autoradiography (ARG), and parametric imaging with blood input functions obtained from separate heart scans. RESULTS: Resting perfusion values in the muscle groups of the lower legs ranged from 1.18 to 5.38 mL/min/100 mL (ARG method). In the muscle groups of the feet, perfusion values ranged from 0.41 to 3.41 mL/min/100 mL (ARG method). Test-retest scans demonstrated a strong correlation and good repeatability for skeletal muscle perfusion with an intraclass correlation coefficient (ICC) of 0.88 and 0.87 and a repeatability coefficient of 34% and 53% for lower legs and feet, respectively. An excellent correlation was demonstrated when comparing volume-of-interest-based methods (1TCM and ARG) (lower legs: ICC = 0.96, feet: ICC = 0.99). Parametric images were in excellent agreement with the volume-of-interest-based ARG method (lower legs: ICC = 0.97, feet: ICC = 0.98). CONCLUSION: Parametric images and volume-of-interest-based methods demonstrated comparable resting perfusion values in the lower legs and feet of healthy individuals. The largest variation was seen between individuals, whereas a smaller variation was seen between muscle groups. Repeated measurements of resting blood flow yielded a strong overall correlation for all methods.

8.
J Nucl Cardiol ; 20(6): 1108-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132814

RESUMO

BACKGROUND: Cardiac 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography preceded by extended fasting is used to demonstrate active cardiac sarcoidosis. However, physiological insulin-dependent myocardial 18F-FDG uptake often obscures 18F-FDG uptake in sarcoid lesions. We therefore aimed to completely suppress physiological myocardial 18F-FDG uptake by pharmaceutically blocking endogenous insulin secretion while elevating free fatty acids (FFAs). METHODS AND RESULTS: Six patients with suspected cardiac sarcoidosis were studied in a randomized cross-over design: (1) 12 hours fasting followed by 2 hours saline infusion (SALINE), and (2) 12 hours fasting followed by 2 hour infusions of somatostatin (300 µg/hour) and heparin (70 mIE/kg/minutes) (SOMA). 18F-FDG PET scans were performed post-infusion. Glucose, insulin, and FFA levels were measured and left ventricle SUV-values were recorded. During the SALINE infusion, insulin, glucose, and FFAs remained stable. By design, the SOMA infusions rapidly (<60 minutes) suppressed insulin completely, while FFA levels peaked at 1.13 ± 0.23 mM. However, SOMA infusions only suppressed cardiac 18F-FDG uptake insignificantly globally [SUVmean (g/mL): 4.0 ± 3.3 (SALINE) vs 2.4 ± 1.2 (SOMA), P = .15] and regionally. CONCLUSIONS: Complete insulin suppression combined with markedly increased circulating FFAs does not completely suppress physiological myocardial 18F-FDG uptake and thus conveys no extra diagnostic value compared with extended fasting.


Assuntos
Cardiomiopatias/diagnóstico por imagem , Fluordesoxiglucose F18 , Heparina/farmacologia , Insulina/sangue , Compostos Radiofarmacêuticos , Sarcoidose/diagnóstico por imagem , Somatostatina/farmacologia , Adulto , Idoso , Estudos Cross-Over , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cintilografia
9.
J Am Heart Assoc ; 6(3)2017 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-28242634

RESUMO

BACKGROUND: High levels of ketone bodies are associated with improved survival as observed with regular exercise, caloric restriction, and-most recently-treatment with sodium-glucose linked transporter 2 inhibitor antidiabetic drugs. In heart failure, indices of ketone body metabolism are upregulated, which may improve energy efficiency and increase blood flow in skeletal muscle and the kidneys. Nevertheless, it is uncertain how ketone bodies affect myocardial glucose uptake and blood flow in humans. Our study was therefore designed to test whether ketone body administration in humans reduces myocardial glucose uptake (MGU) and increases myocardial blood flow. METHODS AND RESULTS: Eight healthy subjects, median aged 60 were randomly studied twice: (1) During 390 minutes infusion of Na-3-hydroxybutyrate (KETONE) or (2) during 390 minutes infusion of saline (SALINE), together with a concomitant low-dose hyperinsulinemic-euglycemic clamp to inhibit endogenous ketogenesis. Myocardial blood flow was measured by 15O-H2O positron emission tomography/computed tomography, myocardial fatty acid metabolism by 11C-palmitate positron emission tomography/computed tomography and MGU by 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Similar euglycemia, hyperinsulinemia, and suppressed free fatty acids levels were recorded on both study days; Na-3-hydroxybutyrate infusion increased circulating Na-3-hydroxybutyrate levels from zero to 3.8±0.5 mmol/L. MGU was halved by hyperketonemia (MGU [nmol/g per minute]: 304±97 [SALINE] versus 156±62 [KETONE], P<0.01), whereas no effects were observed on palmitate uptake oxidation or esterification. Hyperketonemia increased heart rate by ≈25% and myocardial blood flow by 75%. CONCLUSIONS: Ketone bodies displace MGU and increase myocardial blood flow in healthy humans; these novel observations suggest that ketone bodies are important cardiac fuels and vasodilators, which may have therapeutic potentials.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Circulação Coronária/efeitos dos fármacos , Glucose/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Corpos Cetônicos/farmacologia , Miocárdio/metabolismo , Idoso , Radioisótopos de Carbono , Feminino , Fluordesoxiglucose F18 , Técnica Clamp de Glucose , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Radioisótopos de Oxigênio , Palmitatos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA