Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Respir Res ; 23(1): 333, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482438

RESUMO

BACKGROUND: The nasal cannula is considered a trusted and effective means of administering low-flow oxygen and is widely used for neonates and infants requiring oxygen therapy, despite an understanding that oxygen concentrations delivered to patients are variable. METHODS: In the present study, realistic nasal airway replicas derived from medical scans of children less than 3 months old were used to measure the fraction of oxygen inhaled (FiO2) through nasal cannulas during low-flow oxygen delivery. Parameters influencing variability in FiO2 were evaluated, as was the hypothesis that measured FiO2 values could be predicted using a simple, flow-weighted calculation that assumes ideal mixing of oxygen with entrained room air. Tidal breathing through neonatal and infant nasal airway replicas was controlled using a lung simulator. Parameters for nasal cannula oxygen flow rate, nasal airway geometry, tidal volume, respiratory rate, inhalation/exhalation, or I:E ratio (ti/te), breath waveform, and cannula prong insertion position were varied to determine their effect on measured FiO2. In total, FiO2 was measured for 384 different parameter combinations, with each combination repeated in triplicate. Analysis of variance (ANOVA) was used to assess the influence of parameters on measured FiO2. RESULTS: Measured FiO2 was not appreciably affected by the breath waveform shape, the replica geometry, or the cannula position but was significantly influenced by the tidal volume, the inhalation time, and the nasal cannula flow rate. CONCLUSIONS: The flow-weighted calculation overpredicted FiO2 for measured values above 60%, but an empirical correction to the calculation provided good agreement with measured FiO2 across the full range of experimental data.


Assuntos
Cânula , Oxigênio , Criança , Recém-Nascido , Humanos , Lactente
3.
Respir Care ; 69(7): 782-789, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38503467

RESUMO

BACKGROUND: Patients with COPD and other lung diseases are treated with long-term oxygen therapy (LTOT). Portable oxygen sources are required to administer LTOT while maintaining patient autonomy. Existing portable oxygen equipment has limitations that can hinder patient mobility. A novel nasal interface is presented in this study, aiming to enhance breath detection and triggering efficiency of portable pulsed-flow oxygen devices, thereby improving patient mobility and independence. METHOD: To examine the effectiveness of the new interface, 8 respiratory therapists participated in trials using different oxygen sources (tank with oxygen-conserving device, SimplyGo Mini portable oxygen concentrator [POC], and OxyGo NEXT POC) and breathing types (nasal and oral) while using either the new nasal interface or a standard cannula. Each trial was video recorded so participant breaths could be retroactively matched with a pulse/no-pulse response, and triggering success rates were calculated by dividing the number of oxygen pulses by the number of breaths in each trial. After each trial, volunteers were asked to rate their perceived breathing resistance. RESULTS: Nasal breathing consistently resulted in higher triggering success rates compared to oral breathing for pulsed-flow oxygen devices. POCs exhibited higher triggering success rates than did the oxygen tanks with conserving device. However, there were no significant differences in triggering success rates between the two POC models. The new nasal interface demonstrated improved triggering success rates compared to the standard cannula. Whereas the new nasal interface was associated with a slight increase in perceived breathing resistance during nasal breathing trials, participants reported manageable resistance levels when using the interface. CONCLUSIONS: This study demonstrates that the new nasal interface can improve triggering success rates of pulsed-flow oxygen devices during both nasal and oral breathing scenarios. Further research involving patient trials is recommended to understand the clinical implications of improved pulse triggering.


Assuntos
Cânula , Desenho de Equipamento , Oxigenoterapia , Humanos , Oxigenoterapia/instrumentação , Oxigenoterapia/métodos , Masculino , Feminino , Respiração , Adulto , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Oxigênio/administração & dosagem , Gravação em Vídeo , Nariz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA