Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Anal Chem ; 95(7): 3647-3655, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36763009

RESUMO

Accelerator mass spectrometry (AMS) is one of the most sensitive techniques used to measure the long-lived actinides. This is particularly of interest for determination of ultra-trace transuranium nuclides and their isotopic fingerprints for nuclear forensics. In this work, a new method was developed for simultaneous determination of transuranium nuclides (Np, Pu, Am, and Cm isotopes) by using 300 kV AMS after a sequential chemical separation of each group of actinides. 242Pu and 243Am were utilized as tracers for Np/Pu and Am/Cm yield monitoring. The results show that the chemical behaviors of Np and Pu on the TK200 column and those of Am and Cm on the DGA column were very consistent in 8-9 mol/L of HNO3 and 0.015-0.03 mol/L of NaNO2 media during the radiochemical separation. The AMS detection efficiencies for transuranium nuclides were also evaluated. The detection limits for all radionuclides are below femtogram level and even in attogram level for Pu and Cm isotopes. The established method has been successfully applied to accurately measure various transuranium nuclides in a single actinide radionuclide solution, demonstrating its feasibility for nuclear forensic investigation.

2.
Proc Natl Acad Sci U S A ; 117(46): 28649-28654, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139546

RESUMO

Northern Hemispheric high-latitude climate variations during the last glacial are expected to propagate globally in a complex way. Investigating the evolution of these variations requires a precise synchronization of the considered environmental archives. Aligning the globally common production rate variations of the cosmogenic radionuclide 10Be in different archives provides a tool for such synchronizations. Here, we present a 10Be record at <40-y resolution along with subdecadal proxy records from one Black Sea sediment core around Greenland Interstadial 10 (GI-10) ∼41 ka BP and the Laschamp geomagnetic excursion. We synchronized our 10Be record to that from Greenland ice cores based on its globally common production rate variations. The synchronized environmental proxy records reveal a bipartite climate response in the Black Sea region at the onset of GI-10. First, in phase with Greenland warming, reduced sedimentary coastal ice rafted detritus contents indicate less severe winters. Second, and with a lag of 190 (± 44) y, an increase in the detrital K/Ti ratio and authigenic Ca precipitation point to enhanced regional precipitation and warmer lake surface temperatures. We explain the lagged climatic response by a shift in the dominant mode of atmospheric circulation, likely connected with a time-transgressive adjustment of the regional thermal ocean interior to interstadial conditions.

3.
Proc Natl Acad Sci U S A ; 116(13): 5961-5966, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858311

RESUMO

Recently, it has been confirmed that extreme solar proton events can lead to significantly increased atmospheric production rates of cosmogenic radionuclides. Evidence of such events is recorded in annually resolved natural archives, such as tree rings [carbon-14 (14C)] and ice cores [beryllium-10 (10Be), chlorine-36 (36Cl)]. Here, we show evidence for an extreme solar event around 2,610 years B.P. (∼660 BC) based on high-resolution 10Be data from two Greenland ice cores. Our conclusions are supported by modeled 14C production rates for the same period. Using existing 36Cl ice core data in conjunction with 10Be, we further show that this solar event was characterized by a very hard energy spectrum. These results indicate that the 2,610-years B.P. event was an order of magnitude stronger than any solar event recorded during the instrumental period and comparable with the solar proton event of AD 774/775, the largest solar event known to date. The results illustrate the importance of multiple ice core radionuclide measurements for the reliable identification of short-term production rate increases and the assessment of their origins.

4.
Anal Chem ; 93(24): 8442-8449, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34106681

RESUMO

A new analytical method has been developed to determine atomic 236U/238U ratios in samples with only femtograms of 236U using a secondary electron multiplier (SEM) on a multicollector high-resolution inductively coupled plasma mass spectrometer (MC-ICPMS). The abundance sensitivity of the 238U tail at 236 atomic mass unit is reduced from 10-6 to 10-10 with the deployment of a retarding potential quadrupole lens. This method features the reduction of polyatomic interferences from hydride, nitride, lead, and plutonium and the evaluation of nonlinear SEM behavior. The instrument sensitivity is 1-2%, and the estimated methodological detection limit of the 236U/238U atomic ratio is as low as 2 × 10-10. Measurements on reference materials with 236U/238U ratios of 10-7-10-9, including the IRMM-075 series and the ETH Zurich in-house standard ZUTRI, demonstrate the accuracy of our MC-ICPMS technique. The analytical precisions (2σ) are ±4% for 5 fg of 236U at a 236U/238U of 1 × 10-8 and ±8% for 2 fg of 236U at a 236U/238U of 4 × 10-9 level. Compared to state-of-the-art accelerator mass spectrometry techniques and triple quadrupole-based ICPMS, our detection limit is not as low, but the required sample size is 3-40 times lower, and the throughput is as high as 3-4 samples per hour. The new MC-ICPMS-SEM technique is sensitive enough for determining 236U/238U in various small natural samples, such as marine carbonates and seawater.


Assuntos
Plutônio , Carbonatos , Espectrometria de Massas , Água do Mar , Análise Espectral
5.
Environ Sci Technol ; 51(21): 12146-12153, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28990772

RESUMO

In this study we present new seawater data of 236U and 238U sampled in the North Sea in 2010. The North Sea has been and is still receiving a considerable input of anthropogenic radionuclides from nuclear reprocessing facilities located in La Hague (France) and Sellafield (Great Britain). It therefore represents an important source region for oceanographic tracer studies using the transient signal of anthropogenic 236U. A proper knowledge of the sources of 236U is an essential prerequisite for such tracer studies. The 236U data set presented in this study covers the transition regions of the North Sea to the Atlantic Ocean, to the Baltic Sea, and upstream the Elbe River. It is discussed in the context of available 236U data from the literature. Our results show that both 236U concentrations and 236U/238U ratios in surface waters of the North Sea can be explained by simple binary mixing models implying that 236U behaves conservatively in seawater. We further show that the input of 236U by the Elbe River is negligible, while there might be a maximum input of 12 g/yr via the Baltic Sea. The results of the mixing models suggest that this still unidentified 236U contamination could be supplied by fresh water input.


Assuntos
Água do Mar , Poluentes Radioativos da Água , Oceano Atlântico , Países Bálticos , França , Radioisótopos do Iodo , Mar do Norte , Reino Unido , Urânio
6.
Environ Sci Technol ; 51(17): 9826-9835, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28726397

RESUMO

After the Fukushima Dai-ichi nuclear accident, many efforts were put into the determination of the presence of 137Cs, 134Cs, 131I, and other gamma-emitting radionuclides in the ocean, but minor work was done regarding the monitoring of less volatile radionuclides, pure beta-ray emitters or simply radionuclides with very long half-lives. In this study we document the temporal evolution of 129I, 236U, and Pu isotopes (239Pu and 240Pu) in seawater sampled during four different cruises performed 2, 3, and 4 years after the accident, and we compare the results to 137Cs collected at the same stations and depths. Our results show that concentrations of 129I are systematically above the nuclear weapon test levels at stations located close to the FDNPP, with a maximum value of 790 × 107 at·kg-1, that exceeds all previously reported 129I concentrations in the Pacific Ocean. Yet, the total amount of 129I released after the accident in the time 2011-2015 was calculated from the 129I/137Cs ratio of the ongoing 137Cs releases and estimated to be about 100 g (which adds to the 1 kg released during the accident in 2011). No clear evidence of Fukushima-derived 236U and Pu isotopes has been found in this study, although further monitoring is encouraged to elucidate the origin of the highest 240Pu/239Pu atom ratio of 0.293 ± 0.028 we found close to FDNPP.


Assuntos
Acidente Nuclear de Fukushima , Poluentes Radioativos da Água , Radioisótopos de Césio , Japão , Centrais Nucleares , Oceanos e Mares , Oceano Pacífico , Monitoramento de Radiação
7.
Anal Chem ; 88(5): 2832-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26822907

RESUMO

Ultralow level analysis of actinides in urine samples may be required for dose assessment in the event of internal exposures to these radionuclides at nuclear facilities and nuclear power plants. A new bioassay method for analysis of sub-femtogram levels of Am and Cm in large-volume urine samples was developed. Americium and curium were co-precipitated with hydrous titanium oxide from the urine matrix and purified by column chromatography separation. After target preparation using mixed titanium/iron oxides, the final sample was measured by compact accelerator mass spectrometry. Urine samples spiked with known quantities of Am and Cm isotopes in the range of attogram to femtogram levels were measured for method evaluation. The results are in good agreement with the expected values, demonstrating the feasibility of compact accelerator mass spectrometry (AMS) for the determination of minor actinides at the levels of attogram/liter in urine samples to meet stringent sensitivity requirements for internal dosimetry assessment.


Assuntos
Amerício/urina , Cúrio/urina , Espectrometria de Massas/métodos , Isótopos , Limite de Detecção
8.
Anal Chem ; 88(17): 8570-6, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27396439

RESUMO

A new instrumental setup, combining laser ablation (LA) with accelerator mass spectrometry (AMS), has been investigated for the online radiocarbon ((14)C) analysis of carbonate records. Samples were placed in an in-house designed LA-cell, and CO2 gas was produced by ablation using a 193 nm ArF excimer laser. The (14)C/(12)C abundance ratio of the gas was then analyzed by gas ion source AMS. This configuration allows flexible and time-resolved acquisition of (14)C profiles in contrast to conventional measurements, where only the bulk composition of discrete samples can be obtained. Three different measurement modes, i.e. discrete layer analysis, survey scans, and precision scans, were investigated and compared using a stalagmite sample and, subsequently, applied to terrestrial and marine carbonates. Depending on the measurement mode, a precision of typically 1-5% combined with a spatial resolution of 100 µm can be obtained. Prominent (14)C features, such as the atomic bomb (14)C peak, can be resolved by scanning several cm of a sample within 1 h. Stalagmite, deep-sea coral, and mollusk shell samples yielded comparable signal intensities, which again were comparable to those of conventional gas measurements. The novel LA-AMS setup allowed rapid scans on a variety of sample materials with high spatial resolution.

9.
Environ Sci Technol ; 50(10): 5103-10, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27064997

RESUMO

The interaction of trace metals with naturally occurring organic matter (NOM) is a key process of the speciation of trace elements in aquatic environments. The rate of dissociation of metal-NOM complexes will impact the amount of free metal available for biouptake. Assessing the bioavailability of plutonium (Pu) helps to predict its toxic effects on aquatic biota. However, the rate of dissociation of Pu-NOM complexes in natural freshwaters is currently unknown. Here, we used the technique of diffusive gradients in thin films (DGT) with several diffusive layer thicknesses to provide new insights into the dissociation kinetics of Pu-NOM complexes. Results show that Pu complexes with NOM (mainly fulvic acid) are somewhat labile (0.2 ≤ ξ ≤ 0.4), with kd = 7.5 × 10(-3) s(-1). DGT measurements of environmental Pu in organic-rich natural water confirm these findings. In addition, we determined the effective diffusion coefficients of Pu(V) in polyacrylamide (PAM) gel in the presence of humic acid using a diffusion cell (D = 1.70 ± 0.25 × 10(-6) cm(2) s(-1)). These results show that Pu(V) is a more mobile species than Pu(IV).


Assuntos
Água Doce , Plutônio , Difusão , Substâncias Húmicas , Cinética
10.
Environ Sci Technol ; 49(24): 14028-35, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26448161

RESUMO

The Fukushima nuclear accident (March 11, 2011) caused the widespread contamination of Japan by direct deposition of airborne radionuclides. Analysis of weekly air filters has revealed sporadic releases of radionuclides long after the Fukushima Daiichi reactors were stabilized. One major discharge was observed in August 2013 in monitoring stations north of the Fukushima Daiichi nuclear power plant (FDNPP). During this event, an air monitoring station in this previously scarcely contaminated area suddenly reported (137)Cs activity levels that were 30-fold above the background. Together with atmospheric dispersion and deposition simulation, radionuclide analysis in soil indicated that debris removal operations conducted on the FDNPP site on August 19, 2013 are likely to be responsible for this late release of radionuclides. One soil sample in the center of the simulated plume exhibited a high (90)Sr contamination (78 ± 8 Bq kg(-1)) as well as a high (90)Sr/(137)Cs ratio (0.04); both phenomena have usually been observed only in very close vicinity around the FDNPP. We estimate that through the resuspension of highly contaminated particles in the course of these earthmoving operations, gross (137)Cs activity of ca. 2.8 × 10(11) Bq has been released.


Assuntos
Poluentes Radioativos do Ar/análise , Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Filtros de Ar , Japão , Centrais Nucleares , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos
11.
Proc Natl Acad Sci U S A ; 109(16): 5967-71, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22474348

RESUMO

Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be ice core records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.


Assuntos
Radiação Cósmica , Camada de Gelo/química , Atividade Solar , Árvores/química , Regiões Antárticas , Berílio , Radioisótopos de Carbono/análise , Clima , Mudança Climática , Groenlândia , Humanos , Análise de Componente Principal , Radioisótopos/análise , Fatores de Tempo
12.
Chimia (Aarau) ; 68(4): 215-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983600

RESUMO

By focusing high-intensity laser pulses on carbonate samples carbon dioxide is generated and can be directly introduced into the gas ion source (GIS) of an Accelerator Mass Spectrometer (AMS). This new technique allows rapid radiocarbon analyses at high spatial resolution. The design of the deignated laser ablation cell as well as first results on a stalagmite sample are presented.

13.
Anal Chem ; 85(18): 8826-33, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23952680

RESUMO

An analytical method was developed for simultaneous determination of ultratrace level plutonium (Pu) and neptunium (Np) using iron hydroxide coprecipitation in combination with automated sequential injection extraction chromatography separation and accelerator mass spectrometry (AMS) measurement. Several experimental parameters affecting the analytical performance were investigated and compared including sample preboiling operation, aging time, amount of coprecipitating reagent, reagent for pH adjustment, sedimentation time, and organic matter decomposition approach. The overall analytical results show that preboiling and aging are important for obtaining high chemical yields for both Pu and Np, which is possibly related to the aggregation and adsorption behavior of organic substances contained in urine. Although the optimal condition for Np and Pu simultaneous determination requires 5-day aging time, an immediate coprecipitation without preboiling and aging could also provide fairly satisfactory chemical yields for both Np and Pu (50-60%) with high sample throughput (4 h/sample). Within the developed method, (242)Pu was exploited as chemical yield tracer for both Pu and Np isotopes. (242)Pu was also used as a spike in the AMS measurement for quantification of (239)Pu and (237)Np concentrations. The results show that, under the optimal experimental condition, the chemical yields of (237)Np and (242)Pu are nearly identical, indicating the high feasibility of (242)Pu as a nonisotopic tracer for (237)Np determination in real urine samples. The analytical method was validated by analysis of a number of urine samples spiked with different levels of (237)Np and (239)Pu. The measured values of (237)Np and (239)Pu by AMS exhibit good agreement (R(2) ≥ 0.955) with the spiked ones confirming the reliability of the proposed method.


Assuntos
Espectrometria de Massas/métodos , Netúnio/urina , Plutônio/urina , Análise de Injeção de Fluxo/métodos , Humanos
14.
ACS Omega ; 7(23): 20053-20058, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35722008

RESUMO

Spent nuclear fuel must be carefully managed to prevent pollution of the environment with radionuclides. Within the framework of correct radioactive waste management, spent fuel rods are stored in cooling pools to allow short-lived fission products to decay. If fuel rods leak, they liberate radionuclides into the cooling water; therefore, it is essential to determine radionuclide concentrations in the pool water for monitoring purposes and to plan the decommissioning process. In this work, we present, to our knowledge, the first passive sampling technique for measures of actinides in spent nuclear fuel pools, based on recently developed diffusive gradients in thin-film (DGT) configurations. These samplers eliminate the need to retrieve and handle large samples of fuel pool water for radiochemical processing by immobilizing their targeted radionuclides in situ on the solid phase within the sampler. This is additionally the first application of the DGT technique for Cm measure. Herein, we make the calibrated effective diffusion coefficients of U, Pu, Am, and Cm in borated spent fuel pool water available. We tested these samplers in the fuel pool of a nuclear facility and measured samples using accelerator mass spectrometry to provide high-precision isotopic reports, allowing for the first independent implementation of a recently developed technique for dating nuclear fuel based on its Cm isotope signature.

15.
ACS ES T Water ; 2(10): 1688-1696, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277120

RESUMO

Actinides accumulate within aquatic biota in concentrations several orders of magnitude higher than in the seawater [the concentration factor (CF)], presenting an elevated radiological and biotoxicological risk to human consumers. CFs currently vary widely for the same radionuclide and species, which limits the accuracy of the modeled radiation dose to the public through seafood consumption. We propose that CFs will show less dispersion if calculated using a time-integrated measure of the labile (bioavailable) fraction instead of a specific spot sample of bulk water. Herein, we assess recently developed configurations of the diffusive gradients in thin films (DGT) sampling technique to provide a more accurate predictor for the bioaccumulation of uranium, plutonium, and americium within the biota of the Sellafield-impacted Esk Estuary (UK). We complement DGT data with the cross-flow ultrafiltration of bulk seawater to assess the DGT-labile fraction versus the bulk concentration. Sequential elution of Fucus vesiculosis reveals preferential internalization and strong intracellular binding of less particle-reactive uranium. We find significant variations between CF values in biota calculated using a spot sample versus using DGT, which suggest an underestimation of the CF by spot sampling in some cases. We therefore recommend a revision of CF values using time-integrated bioavailability proxies.

16.
Water Res ; 221: 118838, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841796

RESUMO

Nuclear discharges to the oceans have given rise to significant accumulations of radionuclides in sediments which can later remobilise back into the water column. A continuing supply of radionuclides to aquatic organisms and the human food chain can therefore exist, despite the absence of ongoing nuclear discharges. Radionuclide remobilisation from sediment is consequently a critical component of the modelled radiation dose to the public. However, radionuclide remobilisation fluxes from contaminated marine sediments have never been quantitatively determined in-situ to provide a valid assessment of the issue. Here, we combine recent advances in the Diffusive Gradients in Thin Films (DGT) sampling technique with ultrasensitive measurement by accelerator mass spectrometry (AMS) to calculate the remobilisation fluxes of plutonium, americium and uranium isotopes from the Esk Estuary sediments (UK), which have accumulated historic discharges from the Sellafield nuclear reprocessing facility. Isotopic evidence indicates the local biota are accumulating remobilised plutonium and demonstrates the DGT technique as a valid bioavailability proxy, which more accurately reflects the elemental fractionation of the actinides in the biota than traditional bulk water sampling. These results provide a fundamental evaluation of the re-incorporation of bioavailable actinides into the biosphere from sediment reservoirs. We therefore anticipate this work will provide a tool and point of reference to improve radiation dose modelling and contribute insight for other environmental projects, such as the near-surface and deep disposal of nuclear waste.


Assuntos
Elementos da Série Actinoide , Plutônio , Elementos da Série Actinoide/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Humanos , Plutônio/análise , Radioisótopos/análise , Água/análise
17.
Nat Commun ; 13(1): 214, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017519

RESUMO

During solar storms, the Sun expels large amounts of energetic particles (SEP) that can react with the Earth's atmospheric constituents and produce cosmogenic radionuclides such as 14C, 10Be and 36Cl. Here we present 10Be and 36Cl data measured in ice cores from Greenland and Antarctica. The data consistently show one of the largest 10Be and 36Cl production peaks detected so far, most likely produced by an extreme SEP event that hit Earth 9125 years BP (before present, i.e., before 1950 CE), i.e., 7176 BCE. Using the 36Cl/10Be ratio, we demonstrate that this event was characterized by a very hard energy spectrum and was possibly up to two orders of magnitude larger than any SEP event during the instrumental period. Furthermore, we provide 10Be-based evidence that, contrary to expectations, the SEP event occurred near a solar minimum.

18.
Nat Commun ; 13(1): 1196, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256613

RESUMO

The Sun sporadically produces eruptive events leading to intense fluxes of solar energetic particles (SEPs) that dramatically disrupt the near-Earth radiation environment. Such events have been directly studied for the last decades but little is known about the occurrence and magnitude of rare, extreme SEP events. Presently, a few events that produced measurable signals in cosmogenic radionuclides such as 14C, 10Be and 36Cl have been found. Analyzing annual 14C concentrations in tree-rings from Switzerland, Germany, Ireland, Russia, and the USA we discovered two spikes in atmospheric 14C occurring in 7176 and 5259 BCE. The ~2% increases of atmospheric 14C recorded for both events exceed all previously known 14C peaks but after correction for the geomagnetic field, they are comparable to the largest event of this type discovered so far at 775 CE. These strong events serve as accurate time markers for the synchronization with floating tree-ring and ice core records and provide critical information on the previous occurrence of extreme solar events which may threaten modern infrastructure.


Assuntos
Prótons , Atividade Solar , Planeta Terra , Alemanha , Árvores
19.
Nature ; 438(7065): 208-11, 2005 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16281042

RESUMO

Many palaeoclimate records from the North Atlantic region show a pattern of rapid climate oscillations, the so-called Dansgaard-Oeschger events, with a quasi-periodicity of approximately 1,470 years for the late glacial period. Various hypotheses have been suggested to explain these rapid temperature shifts, including internal oscillations in the climate system and external forcing, possibly from the Sun. But whereas pronounced solar cycles of approximately 87 and approximately 210 years are well known, a approximately 1,470-year solar cycle has not been detected. Here we show that an intermediate-complexity climate model with glacial climate conditions simulates rapid climate shifts similar to the Dansgaard-Oeschger events with a spacing of 1,470 years when forced by periodic freshwater input into the North Atlantic Ocean in cycles of approximately 87 and approximately 210 years. We attribute the robust 1,470-year response time to the superposition of the two shorter cycles, together with strongly nonlinear dynamics and the long characteristic timescale of the thermohaline circulation. For Holocene conditions, similar events do not occur. We conclude that the glacial 1,470-year climate cycles could have been triggered by solar forcing despite the absence of a 1,470-year solar cycle.

20.
Sci Total Environ ; 765: 142741, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33071133

RESUMO

The aim of this study was to assess the potential of combining the conservatively behaving anthropogenic radionuclides 236U and 237Np to gain information on the origin of water masses tagged with liquid effluents from Nuclear Reprocessing Plants. This work includes samples collected from three full-depth water columns in two areas: i) the Arctic Ocean, where Atlantic waters carry the signal of Sellafield (United Kingdom) and La Hague (France) nuclear reprocessing facilities; and ii) the western Mediterranean Sea, directly impacted by Marcoule reprocessing plant (France). This work is complemented by the study of the particle-reactive Pu isotopes as an additional fingerprint of the source region. In the Canada Basin, Atlantic waters showed the highest concentrations and 237Np/236U ratios in agreement with the estimated values for North Atlantic waters entering the Arctic Ocean and tagged with the signal of European Nuclear Reprocessing Plants. These results may reflect the impact of the documented releases for the 1990s. In the Mediterranean Sea, an excess of 236U presumably caused by Marcoule is reflected in the lower 237Np/236U ratios compared to the Global Fallout signal in all the studied samples. On the contrary, the 239,240Pu profiles were mainly governed by the Global Fallout. The impact of Marcoule as a local source is further corroborated when comparing the temporal evolution of these ratios between 2001 and 2013. The lowest 237Np/236U ratios observed in 2001 at the surface reflect a previous local input that is no longer observed in 2013 as it had been homogenized through the whole water column. This work presents the use of 237Np as a new ocean tracer. A more accurate characterization of the main sources is still needed to optimize the use of 236U-237Np as a new tool to understand transient oceanographic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA