Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 161(Pt A): 105159, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34454023

RESUMO

Novel live vaccine strains of Mannheimia haemolytica serotypes (St)1 and St6, expressing and secreting inactive yet immunogenic leukotoxin (leukotoxoid) fused to antigenic domains of Mycoplasma bovis Elongation Factor Tu (EFTu) and Heat shock protein (Hsp) 70 were constructed and tested for efficacy in cattle. Control calves were administered an intranasal mixture of M. haemolytica St1 and St6 mutants (ΔlktCAV4) expressing and secreting leukotoxoid while vaccinated calves were administered an intranasal mixture of like M. haemolytica St1 and St6 leukotoxoid mutants coupled to M. bovis antigens (EFTu-Hsp70-ΔlktCAV4). Both M. haemolytica strains were recovered from palatine tonsils up to 34 days post intranasal exposure. On day 35 all calves were exposed to bovine herpes virus-1, four days later lung challenged with virulent M. bovis, then euthanized up to 20 days post-challenge. Results showed all cattle produced systemic antibody responses against M. haemolytica. The vaccinates also produced systemic antibody responses to M. bovis antigen, and concurrent reductions in temperatures, middle ear infections, joint infection and lung lesions versus the control group. Notably, dramatically decreased lung loads of M. bovis were detected in the vaccinated cattle. These observations indicate that the attenuated M. haemolytica vaccine strains expressing Mycoplasma antigens can control M. bovis infection and disease symptoms in a controlled setting.


Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Infecções por Mycoplasma , Mycoplasma bovis , Animais , Antígenos de Bactérias , Bovinos , Doenças dos Bovinos/prevenção & controle , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/genética , Vacinação
2.
Front Vet Sci ; 8: 782872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869750

RESUMO

Bovine respiratory disease complex (BRDC) is a costly economic and health burden for the dairy and feedlot cattle industries. BRDC is a multifactorial disease, often involving viral and bacterial pathogens, which makes it difficult to effectively treat or vaccinate against. Mannheimia haemolytica (MH) are common commensal bacteria found in the nasopharynx of healthy cattle; however, following environmental and immunological stressors, these bacteria can rapidly proliferate and spread to the lower respiratory tract, giving rise to pneumonic disease. Severe MH infections are often characterized by leukocyte infiltration and dysregulated inflammatory responses in the lungs. IL-17A is thought to play a key role in this inflammatory response by inducing neutrophilia, activating innate and adaptive immune cells, and further exacerbating lung congestion. Herein, we used a small molecule inhibitor, ursolic acid (UA), to suppress IL-17A production and to determine the downstream impact on the immune response and disease severity following MH infection in calves. We hypothesized that altering IL-17A signaling during MH infections may have therapeutic effects by reducing immune-mediated lung inflammation and improving disease outcome. Two independent studies were performed (Study 1 = 32 animals and Study 2 = 16 animals) using 4-week-old male Holstein calves, which were divided into 4 treatment group including: (1) non-treated and non-challenged, (2) non-treated and MH-challenged, (3) UA-treated and non-challenged, and (4) UA-treated and MH-challenged. Based on the combined studies, we observed a tendency (p = 0.0605) toward reduced bacterial burdens in the lungs of UA-treated animals, but did not note a significant difference in gross (p = 0.3343) or microscopic (p = 0.1917) pathology scores in the lungs. UA treatment altered the inflammatory environment in the lung tissues following MH infection, reducing the expression of IL-17A (p = 0.0870), inflammatory IL-6 (p = 0.0209), and STAT3 (p = 0.0205) compared to controls. This reduction in IL-17A signaling also appeared to alter the downstream expression of genes associated with innate defenses (BAC5, DEFB1, and MUC5AC) and lung remodeling (MMP9 and TIMP-1). Taken together, these results support our hypothesis that IL-17A signaling may contribute to lung immunopathology following MH infections, and further understanding of this inflammatory pathway could expand therapeutic intervention strategies for managing BRDC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA