Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 16(10): 3209-16, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26291120

RESUMO

Self-assembled hydrogen-bonded networks of the polysaccharide pectin, a mechanically functional component of plant cell walls, have been of recent interest as biomimetic exemplars of physical gels, and the microrheological and strain-stiffening behaviors have been previously investigated. Despite this detailed rheological characterization of preformed gels, little is known about the fundamental arrangement of the polymers into cross-linking junction zones, the size of these bonded regions, and the resultant network architecture in these hydrogen-bonded materials, especially in contrast to the plethora of such information available for their well-known calcium-assembled counterparts. In this work, in concert with pertinent rheological measurements, an in-depth structural study of the hydrogen-bond-mediated gelation of pectins is provided. Gels were realized by using glucona-delta-lactone to decrease the pH of solutions of pectic polymers that had a (blockwise) low degree of methylesterification. Small-angle X-ray scattering and transmission electron microscopy were utilized to access structural information on length scales on the order of nanometers to hundreds of nanometers, while complementary mechanical properties were measured predominantly using small amplitude oscillatory shear rheology.


Assuntos
Concentração de Íons de Hidrogênio
2.
Langmuir ; 30(10): 2886-95, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24555858

RESUMO

Water-cast nanocomposite films formed by poly(ethylene oxide) (PEO) and Laponite clay were found to display three characteristic levels of structure with large-scale orientation. The first level with the length scale of ca. 30-50 nm was the clay lamellar bundles, which tended to stack perpendicularly to the film surface. The second level with the characteristic length of 1.8 nm was associated with the alternating stacking of the silicate layers and the PEO chains sandwiched between them. The preferred orientations of these two levels of structure were independent of clay content, solvent removal rate for the film preparation, and the crystallization temperature of the PEO chains situating outside the clay bundles. The third level of structure was characterized by the preferred orientation of the PEO crystalline stems with respect to the surface of the silicate layers. Perpendicular orientation always dominated in the nanocomposite films prepared by slow solvent removal irrespective of crystallization temperature. In the films prepared by fast solvent removal, however, parallel crystal orientation set in as the clay concentration exceeded ca. 33 wt %. The preferred crystal orientation was ascribed to the confinement effect imposed by the clay bundles to the crystallization of the PEO chains situating in the interbundle region. In the films cast by slow solvent removal, the weaker confinement associated with the larger interbundle distance led to perpendicular crystal orientation. When the interbundle distance was reduced to ca. 30 nm in the films prepared by rapid solvent evaporation, the strong confinement directed the crystals to form parallel orientation.

3.
Angew Chem Int Ed Engl ; 53(34): 9090-3, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24989683

RESUMO

Theoretical models predict that a variety of self-assembled structures of closely packed spherical particles may result when they are confined in a cylindrical domain. In the present work we demonstrate for the first time that the polymer-coated nanoparticles confined in the self-assembled cylindrical domains of a block copolymer pack in helical morphology, where we can isolate individual fibers filled with helically arranged nanoparticles. This finding provides unique possibilities for fundamental as well as application-oriented research in similar directions.

4.
Nat Commun ; 15(1): 707, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267492

RESUMO

Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).

5.
Carbohydr Polym ; 302: 120390, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604068

RESUMO

Montmorillonite (MMT) has been frequently utilized as drug vehicles due to its high specific surface area, excellent cation exchange capacity and biocompatibility. However, the significant flocculation of MMT under physiological condition restricted its application to drug delivery. To conquer this problem, the graft-type PEGylated chitosan (PEG-CS) adducts were synthesized as intercalator to stabilize MMT dispersion. Through electrostatic attraction between the chitosan and MMT, the PEG-CS adducts were adsorbed on MMT surfaces and intercalated into MMT. The resulting PEG-CS/MMT nanosheets possessed PEG-rich surfaces, thus showing outstanding dispersion in serum-containing environment. Moreover, the physicochemical characterization revealed that the increased mass ratio of PEG-CS to MMT led to the microstructure transition of PEG-CS/MMT nanosheets from multilayered to exfoliated structure. Interestingly, the PEG-CS/MMT nanosheets with mass ratio of 8.0 in freeze-dried state exhibited a hierarchical lamellar structure organized by the intercalated MMT bundles and unintercalated PEG-CS domains. Notably, the multilayered PEG-CS/MMT nanosheets showed the capability of loading doxorubicin (DOX) superior to the exfoliated counterparts. Importantly, the DOX@PEG-CS/MMT nanosheets endocytosed by TRAMP-C1 cells liberated the drug progressively within acidic organelles, thereby eliciting cell apoptosis. This work provides a new strategy of achieving the controllable dispersion stability of MMT nanoclays towards application potentials in drug delivery.


Assuntos
Quitosana , Neoplasias , Humanos , Quitosana/química , Argila , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/química , Polietilenoglicóis/química
6.
Nat Commun ; 13(1): 5460, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115857

RESUMO

Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of conjugated polymers to produce a series of discontinuously conjugated polymer photocatalysts. Water can effectively be brought into the interior through these hydrophilic non-conjugated segments, resulting in effective water/polymer interfaces inside the bulk discontinuously conjugated polymers in both thin-film and solution. Discontinuously conjugated polymer with 10 mol% hexaethylene glycol-based hydrophilic segments achieves an apparent quantum yield of 17.82% under 460 nm monochromatic light irradiation in solution and a hydrogen evolution rate of 16.8 mmol m-2 h-1 in thin-film. Molecular dynamics simulations show a trend similar to that in experiments, corroborating that main-chain engineering increases the possibility of a water/polymer interaction. By introducing non-conjugated hydrophilic segments, the effective conjugation length is not altered, allowing discontinuously conjugated polymers to remain efficient photocatalysis.

7.
Carbohydr Polym ; 215: 246-252, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981351

RESUMO

This investigation reports the nanostructural evolution and associated encapsulation and elution of a hydrophobic drug, demethoxycurcumin (DMC), as a molecular probe, with the carboxymethyl-hexanoyl chitosan (CHC), which has been a technically interesting amphiphilic chitosan-based polymer successfully developed in this lab for years. The self-assembly nature of the CHC in neutral aqueous solutions allowed efficient encapsulation of various drugs without deteriorating or changing drugs' activity. However, its self-assembly behavior associated with nanostructural stability or variation, in terms of residence time in aqueous solution has not been well characterized and how the CHC nanostructure may be altered upon entrapping a drug, followed releasing out of the nanostructure. In this study, the CHC/DMC assembled model was used to evaluate entrapping efficiency, CHC-DMC interaction, and nanostructural variation while the drug being encapsulated and released from the CHC nanoparticles. Experimental outcomes showed a fractal transition between nanoparticulate and short fiber-like network evolution of the CHC as time elapsed, with the presence or absence of the DMC probe. This entrapment of DMC is relatively efficient upon CHC assembly and the associated DMC arrangement inside the helical CHC macromolecule gave largely increasing space over the resulting CHC/DMC assembly. Its excellent colloidal and nanostructural stability over a reasonably long period of time in testing environment suggests that this CHC/DMC assembly not only provides a crucial advantage for drug delivery application but also considers as a nanostructural model for better understanding of the mechanism upon drug encapsulation and elution which may be applicable to alternative amphiphilic polysaccharide-based macromolecules.

8.
Biomaterials ; 30(34): 6629-37, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19767097

RESUMO

Heparin is a potent anticoagulant; however, it is poorly absorbed in the gastrointestinal tract. In this study, we developed a nanoparticle (NP) system shelled with chitosan (CS) for oral delivery of heparin; the NPs were prepared by a simple ionic gelation method without chemically modifying heparin. The drug loading efficiency of NPs was nearly 100% because a significantly excess amount of CS was used for the CS/heparin complex preparation. The internal structure of the prepared NPs was examined by small angle X-ray scattering (SAXS). The obtained SAXS profiles suggest that the NPs are associated with a two-phase system and consist of the CS/heparin complex microdomains surrounded by the CS matrix. The stability of NPs in response to pH had a significant effect on their release of heparin. No significant anticoagulant activity was detected after oral administration of the free form heparin solution in a rat model, while administration of NPs orally was effective in the delivery of heparin into the blood stream; the absolute bioavailability was found to be 20.5%. The biodistribution of the drug carrier, (99m)Tc-labeled CS, in rats was studied by the single-photon emission computed tomography after oral administration of the radio-labeled NPs. No significant radioactivity was found in the internal organs, indicating a minimal absorption of CS into the systemic circulation. These results suggest that the NPs developed in the study can be employed as a potential carrier for oral delivery of heparin.


Assuntos
Anticoagulantes/farmacocinética , Quitosana/química , Heparina/farmacocinética , Nanopartículas , Administração Oral , Animais , Anticoagulantes/química , Disponibilidade Biológica , Células CACO-2 , Portadores de Fármacos , Heparina/química , Humanos , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA