Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Langmuir ; 38(14): 4452-4460, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35348343

RESUMO

Rapid shedding of microdroplets enhances the performance of self-cleaning, anti-icing, water-harvesting, and condensation heat-transfer surfaces. Coalescence-induced droplet jumping represents one of the most efficient microdroplet shedding approaches and is fundamentally limited by weak fluid-substrate dynamics, resulting in a departure velocity smaller than 0.3u, where u is the capillary-inertia-scaled droplet velocity. Laplace pressure-driven single-droplet jumping from rationally designed superhydrophobic grooves has been shown to break conventional capillary-inertia energy transfer paradigms by squeezing and launching single droplets independent of coalescence. However, this interesting droplet shedding mechanism remains poorly understood. Here, we investigate single-droplet jumping from superhydrophobic grooves by examining its dependence upon surface and droplet configurations. Using a volume of fluid (VOF) simulation framework benchmarked with optical visualizations, we verify the Laplace pressure contrast established within the groove-confined droplet that governs single-droplet jumping. An optimal departure velocity of 1.13u is achieved, well beyond what is currently available using condensation on homogeneous or hierarchical superhydrophobic structures. We further develop a jumping/non-jumping regime map in terms of surface wettability and initial droplet volume and demonstrate directional jumping under asymmetric confinement. Our work reveals key fluid-structure interactions required for the tuning of droplet jumping dynamics and guides the design of interfaces and materials for enhanced microdroplet shedding for a plethora of applications.


Assuntos
Hidrodinâmica , Água , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Água/química , Molhabilidade
2.
Langmuir ; 38(4): 1540-1549, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35072484

RESUMO

Superhydrophobic surfaces decorated with macrostructures have attracted extensive attention due to their excellent performance of reducing the contact time of impacting droplets. In many practical applications, the surface is not perpendicular to the droplet impact direction, but the impacting dynamics in such scenarios still remain mysterious. Here, we experimentally investigate the dynamics of droplet impact on inclined ridged superhydrophobic surfaces and reveal the effect of Wen (the normal Weber number) and α (the inclination angle) on the contact time τ. As Wen increases, τ first decreases rapidly until a platform is reached; if Wen continues to increase, τ further reduces to a lower platform, indicating a three-stage variation of τ in low, middle, and high Wen regions. In the middle and high Wen regions, the contact time is reduced by 30 and 50%, respectively, and is dominated by droplet spreading/retraction in the tangential and lateral directions, respectively. A quantitative analysis demonstrates that τ in the middle and high Wen regions is independent of Wen and α, while the range of middle and high Wen regions is related to α. When α < 30°, increasing α narrows the middle Wen region and enlarges the high Wen region; when α ≥ 30°, the two Wen regions remain unchanged. In addition, droplet sliding is hindered by the friction and is affected by the droplet morphology in the high Wen region. Overall, the synergistic effect of the surface inclination and macrostructures effectively promotes the detachment of impacting droplets on superhydrophobic surfaces, which provides guidance for applications of superhydrophobic surfaces.


Assuntos
Água , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Água/química
3.
Langmuir ; 38(13): 4059-4064, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35324201

RESUMO

A microfluidic system was created to fabricate polydimethylsiloxane (PDMS) microspheres, whose shape, surface smoothness, and size were controlled. Resulting from their excellent optical properties and elasticity prepared by the apparatus, each PDMS microsphere could act as a microlens and separate imaging unit. The focal length of the microlens was simply tuned by the forces posed on the beads. For the microlens array (MLA) application, it was constructed simply through the assembly of the monodisperse PDMS beads.


Assuntos
Dimetilpolisiloxanos , Microfluídica , Microesferas
4.
Langmuir ; 38(2): 863-869, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34968065

RESUMO

Patterned surfaces combining hydrophobic and hydrophilic properties show great promise in moisture condensation; however, a comprehensive understanding of the multiscale interfacial behavior and the further controlling method is still lacking. In this paper, we studied the moisture condensation on a hybrid superhydrophobic-hydrophilic surface with hierarchical structures from micro- to nanoscale. For the first time, we demonstrated the effects of wettability difference and microstructure size on the final condensation efficiency. By optimizing the wettability difference, sub-millimeter pattern width, and microstructure size, maximum 90% enhancement of the condensation rate was achieved as compared with the superhydrophobic surface at a subcooling of 13 K. We also demonstrated the enhanced condensation mechanism by a detailed analysis of the condensation process. Our work proposed effective and systematical methods for controlling and optimizing moisture condensation on the patterned surfaces and shed light on application integration of such promising functional surfaces.

5.
Langmuir ; 37(46): 13729-13736, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34762805

RESUMO

The dewetting phenomenon of a liquid film in the presence of a surfactant exists in various natural, industrial, and biomedical processes but still remains mysterious in some specific scenarios. Here, we investigate the dewetting behavior of water films initiated by surfactant-laden droplet impact and show that the maximum dewetting diameter can even reach more than 50 times that of the droplet size. We identify the S-type variation of the dewetting area and demonstrate its correlation to the dynamic surface tension reduction. From a viewpoint of energy conversion, we attribute the dewetting to the released surface energy caused by the surfactant addition and establish a linear relation between the maximum dewetting and the surfactant concentration in the film, i.e., dmax2 ∝ cfilm, which agrees well with the experiments. These results may advance the physics of liquid film dewetting triggered by surfactant injection, which shall further guide practical applications.

6.
Nanotechnology ; 32(37)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34020428

RESUMO

Seawater desalination is vital to our modern civilization. Here, we report that the carbon honeycomb (CHC) has an outstanding water permeability and salt rejection in the seawater desalination, as revealed by molecular dynamics simulations. More than 92% of ions are rejected by CHC at applied pressures ranging from 50 to 250 MPa. CHC has a perfect salt rejection at pressures below 150 Mpa. On increasing the applied pressure up to 150 MPa, the salt rejection reduces only to 92%. Pressure, temperature and temperature gradient are noted to play a significant role in modulating the water flux. The water flux increases with pressure and temperature. With the introduction of a temperature gradient of 3.5 K nm-1, the seawater permeability increases by 33% as compared to room temperature. The water permeability of the CHC is greater than other carbon materials and osmosis membranes including graphene (8.7 times) and graphyne (2.1 times). It indicates the significant potential of the CHC for commercial application in water purification.

7.
Langmuir ; 36(14): 3713-3719, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32216255

RESUMO

Droplet jumping phenomenon widely exists in the fields of self-cleaning, antifrosting, and heat transfer enhancement. Numerous studies have been reported on the static droplet jumping while the rolling droplet jumping still remains unnoticed even though it is very common in practice. Here, we used the volume of fluid (VOF) method to simulate the droplet jumping induced by coalescence of a rolling droplet and a stationary one with corresponding experiments conducted to validate the correctness of the simulation model. The departure velocity of the jumping droplet was the main concerned here. The results show that when the center velocity of the rolling droplet (V0 = ωR, where ω is the angular velocity of the rolling droplet and R is the droplet radius) is fixed, the vertical departure velocity satisfies a power law which can be expressed as Vz,depar = aRb. When the droplet radius is fixed, the vertical departure velocity first decreases and then increases if the center velocity exceeds a critical value. Interestingly, the critical center velocity is demonstrated to be approximately 0.76 times the capillary-inertial velocity, corresponding to a constant Weber number of 0.58. Different from the vertical departure velocity, the horizontal departure velocity is basically proportional to the center velocity of the rolling droplet. These results deepen the understanding of the droplet jumping physics, which shall further promote related applications in engineering fields.

8.
Langmuir ; 36(21): 5855-5862, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32390439

RESUMO

Although a superhydrophobic surface could realize rapid rebounding (i.e., short contact time) of an orthogonal impacting droplet, the rebounding along the original impacting route may limit its engineering application; in contrast, the directional transportation seems to be more promising. Here, we achieve directional transportation of a droplet impacting a wettability-controlled surface. When the droplet eccentrically impacts on the boundary between the superhydrophobic part and the hydrophilic part, it undergoes spreading, retracting, departure, throwing, and breaking up stages, and finally bounces off directionally. The directional transportation distance could even reach more than ten times the droplet size, considered the adhesion length (i.e., covering length on the hydrophilic part by the droplet at the maximum spreading) is optimized. However, there is a critical adhesion length, above which the directional transportation does not occur. To be more generalized, the adhesion length is de-dimensionalized by the maximum spreading radius, and the results show that as the dimensionless adhesion length increases, the transportation distance first increases and then decreases to zero. Under the present impacting conditions, the optimal dimensionless adhesion length corresponding to the maximum transportation distance is near 0.4, and the critical dimensionless adhesion length is about 0.7. These results provide a fundamental understanding of droplet directional transportation and could be useful for related engineering applications.

9.
Langmuir ; 36(33): 9952-9959, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32787129

RESUMO

An elaborated surface with a superhydrophilic area and a superhydrophobic area was fabricated by inkjet printing a water-soluble polymer template on a superhydrophilic layer. Titanate was used to generate the superhydrophilic layer with an in situ reaction. A water-soluble polymer template was inkjet printed on the facile fabricated superhydrophilic layer. Superhydrophobic treatment was carried out on the inkjet-printed surface with perfluorinated molecules. A superhydrophilic-superhydrophobic patterned surface (SSPS) was obtained by washing out the water-soluble polymer template. Various patterns of SSPS were fabricated with the different water-soluble polymer templates. Then, adhesion and deposition of water droplets were studied on the SSPS with the different wetting abilities on the surface. Meanwhile, a microreaction with a microfluidic chip was realized on the SSPS. In this work, systematic research on fabricating an SSPS based on a facile fabricated superhydrophilic layer with an inkjet-printed water-soluble polymer template is presented. It will have great potential for patterning materials, fabricating devices, and researching interfaces, such as microdroplet self-removal, analyte enrichment, and liquid-liquid interface reaction.

10.
Langmuir ; 34(48): 14562-14569, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30360621

RESUMO

Although a superhydrophobic surface has great potential to delay frosting, it tends to become frosted under humid conditions and needs to defrost periodically. So far, the exact mechanism of defrosting still remains unclear. Here, we investigate the frost self-removal mechanism during defrosting on vertical superhydrophobic surfaces. Two self-removal modes are observed: peeling off and jumping off. When the frost thickness is larger than a threshold value, peeling off mode occurs; otherwise, jumping off mode takes place. Compared with the peeling off mode, the jumping off mode is less effective in self-removing frost as jumping is limited by energy transformation. A theoretical model based on frost melting-water permeation mechanism is proposed to determine the threshold value of frost thickness. According to this model, the threshold value of the frost thickness is dependent on the frost porosity and the surface temperature (or heat flux). For our particular experiments, the threshold value of the frost thickness predicted by the proposed model agrees well with our experimental results. Our work may advance the defrosting applications of superhydrophobic surfaces in related engineering fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA