Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Sci ; 30(1): 35, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259079

RESUMO

BACKGROUND: Cancer-specific adoptive T cell therapy has achieved successful milestones in multiple clinical treatments. However, the commercial production of cancer-specific T cells is often hampered by laborious cell culture procedures, the concern of retrovirus-based gene transfection, or insufficient T cell purity. METHODS: In this study, we developed a non-genetic engineering technology for rapidly manufacturing a large amount of cancer-specific T cells by utilizing a unique anti-cancer/anti-CD3 bispecific antibody (BsAb) to directly culture human peripheral blood mononuclear cells (PBMCs). The anti-CD3 moiety of the BsAb bound to the T cell surface and stimulated the differentiation and proliferation of T cells in PBMCs. The anti-cancer moiety of the BsAb provided these BsAb-armed T cells with the cancer-targeting ability, which transformed the naïve T cells into cancer-specific BsAb-armed T cells. RESULTS: With this technology, a large amount of cancer-specific BsAb-armed T cells can be rapidly generated with a purity of over 90% in 7 days. These BsAb-armed T cells efficiently accumulated at the tumor site both in vitro and in vivo. Cytotoxins (perforin and granzyme) and cytokines (TNF-α and IFN-γ) were dramatically released from the BsAb-armed T cells after engaging cancer cells, resulting in a remarkable anti-cancer efficacy. Notably, the BsAb-armed T cells did not cause obvious cytokine release syndrome or tissue toxicity in SCID mice bearing human tumors. CONCLUSIONS: Collectively, the BsAb-armed T cell technology represents a simple, time-saving, and highly safe method to generate highly pure cancer-specific effector T cells, thereby providing an affordable T cell immunotherapy to patients.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias , Camundongos , Animais , Humanos , Linfócitos T , Leucócitos Mononucleares , Camundongos SCID , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/uso terapêutico , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Antineoplásicos/metabolismo
2.
PLoS Biol ; 17(6): e3000286, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194726

RESUMO

During rheumatoid arthritis (RA) treatment, long-term injection of antitumor necrosis factor α antibodies (anti-TNFα Abs) may induce on-target toxicities, including severe infections (tuberculosis [TB] or septic arthritis) and malignancy. Here, we used an immunoglobulin G1 (IgG1) hinge as an Ab lock to cover the TNFα-binding site of Infliximab by linking it with matrix metalloproteinase (MMP) -2/9 substrate to generate pro-Infliximab that can be specifically activated in the RA region to enhance the selectivity and safety of treatment. The Ab lock significantly inhibits the TNFα binding and reduces the anti-idiotypic (anti-Id) Ab binding to pro-Infliximab by 395-fold, 108-fold compared with Infliximab, respectively, and MMP-2/9 can completely restore the TNFα neutralizing ability of pro-Infliximab to block TNFα downstream signaling. Pro-Infliximab was only selectively activated in the disease site (mouse paws) and presented similar pharmacokinetics (PKs) and bio-distribution to Infliximab. Furthermore, pro-Infliximab not only provided equivalent therapeutic efficacy to Infliximab but also maintained mouse immunity against Listeria infection in the RA mouse model, leading to a significantly higher survival rate (71%) than that of the Infliximab treatment group (0%). The high-selectivity pro-Infliximab maintains host immunity and keeps the original therapeutic efficiency, providing a novel strategy for RA therapy.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Infliximab/farmacologia , Animais , Artrite Reumatoide/fisiopatologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Infliximab/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
3.
J Nanobiotechnology ; 20(1): 58, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101043

RESUMO

BACKGROUND: Humanization of mouse monoclonal antibodies (mAbs) is crucial for reducing their immunogenicity in humans. However, humanized mAbs often lose their binding affinities. Therefore, an in silico humanization method that can prevent the loss of the binding affinity of mAbs is needed. METHODS: We developed an in silico V(D)J recombination platform in which we used V(D)J human germline gene sequences to design five humanized candidates of anti-tumor necrosis factor (TNF)-α mAbs (C1-C5) by using different human germline templates. The candidates were subjected to molecular dynamics simulation. In addition, the structural similarities of their complementarity-determining regions (CDRs) to those of original mouse mAbs were estimated to derive the weighted interatomic root mean squared deviation (wRMSDi) value. Subsequently, the correlation of the derived wRMSDi value with the half maximal effective concentration (EC50) and the binding affinity (KD) of the humanized anti-TNF-α candidates was examined. To confirm whether our in silico estimation method can be used for other humanized mAbs, we tested our method using the anti-epidermal growth factor receptor (EGFR) a4.6.1, anti-glypican-3 (GPC3) YP9.1 and anti-α4ß1 integrin HP1/2L mAbs. RESULTS: The R2 value for the correlation between the wRMSDi and log(EC50) of the recombinant Remicade and those of the humanized anti-TNF-α candidates was 0.901, and the R2 value for the correlation between wRMSDi and log(KD) was 0.9921. The results indicated that our in silico V(D)J recombination platform could predict the binding affinity of humanized candidates and successfully identify the high-affinity humanized anti-TNF-α antibody (Ab) C1 with a binding affinity similar to that of the parental chimeric mAb (5.13 × 10-10). For the anti-EGFR a4.6.1, anti-GPC3 YP9.1, and anti-α4ß1 integrin HP1/2L mAbs, the wRMSDi and log(EC50) exhibited strong correlations (R2 = 0.9908, 0.9999, and 0.8907, respectively). CONCLUSIONS: Our in silico V(D)J recombination platform can facilitate the development of humanized mAbs with low immunogenicity and high binding affinities. This platform can directly transform numerous mAbs with therapeutic potential to humanized or even human therapeutic Abs for clinical use.


Assuntos
Inibidores do Fator de Necrose Tumoral , Recombinação V(D)J , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados , Camundongos , Fator de Necrose Tumoral alfa
4.
Biotechnol Appl Biochem ; 68(3): 676-682, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32610363

RESUMO

Gap junctional intercellular communication (GJIC) is the transfer of ions, metabolites, and second messengers between neighboring cells through intercellular junctions. Connexin 43 (Cx43) was found to be the type of gap junction protein responsible for human granulosa cells (GCs) and oocyte communication, which is required for folliculogenesis and oocyte maturation. Bisphenol A (BPA), an estrogenic-like endocrine-disrupting chemical, is one of the most widely produced chemicals around the world. There are reports that the chemical might cause endometrial tumorigenesis and several female reproductive disorders. This study demonstrated that cell culture medium, containing antioxidants (N-acetyl-l-cysteine and l-ascorbic acid-2-phosphate), was able to enhance the survival and self-renewal of GCs. In addition, we found that BPA at environmentally relevant concentration (10-7  M) reduced Cx43 expression and GJIC in GCs through estrogen receptor and mitogen-activated protein kinase pathways. The results of this study not only reveal the reproductive toxicity of BPA but also provide possible mechanisms by which BPA inhibited GJIC in GCs.


Assuntos
Compostos Benzidrílicos/farmacologia , Comunicação Celular/efeitos dos fármacos , Conexina 43/antagonistas & inibidores , Regulação para Baixo , Junções Comunicantes/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Fenóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Conexina 43/genética , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Feminino , Junções Comunicantes/metabolismo , Células da Granulosa/metabolismo , Humanos
5.
J Nanobiotechnology ; 18(1): 118, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854720

RESUMO

BACKGROUND: Developing a universal strategy to improve the specificity and sensitivity of PEGylated nanoaparticles (PEG-NPs) for assisting in the diagnosis of tumors is important in multimodality imaging. Here, we developed the anti-methoxypolyethylene glycol (mPEG) bispecific antibody (BsAb; mPEG × HER2), which has dual specificity for mPEG and human epidermal growth factor receptor 2 (HER2), with a diverse array of PEG-NPs to confer nanoparticles with HER2 specificity and stronger intensity. RESULT: We used a one-step formulation to rapidly modify the nanoprobes with mPEG × HER2 and optimized the modified ratio of BsAbs on several PEG-NPs (Lipo-DiR, SPIO, Qdot and AuNP). The αHER2/PEG-NPs could specifically target MCF7/HER2 cells (HER2++) but not MCF7/neo1 cells (HER2+/-). The αHER2/Lipo-DiR and αHER2/SPIO could enhance the sensitivity of untargeted PEG-NPs on MCF7/HER2 (HER2++). In in vivo imaging, αHER2/Lipo-DiR and αHER2/SPIO increased the specific targeting and enhanced PEG-NPs accumulation at 175% and 187% on 24 h, respectively, in HER2-overexpressing tumors. CONCLUSION: mPEG × HER2, therefore, provided a simple one-step formulation to confer HER2-specific targeting and enhanced sensitivity and contrast intensity on HER2 positive tumors for multimodality imaging.


Assuntos
Anticorpos Biespecíficos , Neoplasias da Mama , Sistemas de Liberação de Medicamentos/métodos , Receptor ErbB-2 , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacocinética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/metabolismo , Feminino , Humanos , Células MCF-7 , Imagem Multimodal , Nanopartículas/química , Nanopartículas/metabolismo , Polietilenoglicóis/química , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo
6.
Anal Chem ; 91(13): 8310-8317, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31144495

RESUMO

An insufficient amount of detection antibodies bound to their antigens usually limits the sensitivity of immunoassays. Here, we describe a simple method to improve the detection limit and sensitivity of various immunoassays by mixing detection antibodies with a soluble poly protein G (named 8pG). 8pG was developed by fusing eight repeated fragment crystallizable (Fc) binding domains of streptococcal protein G to a linear polymer. Simply mixing detection antibodies with 8pG to form an antibody/8pG complex largely increased the accumulation of detection antibody to target molecules, which dramatically enhanced the sensitivity in direct ELISA, sandwich ELISA, Western blot, and flow cytometry systems, separately. The detection limit of Western blot for low-abundance PEGylated interferon (Pegasys) and recombinant human CTLA4 (rhCTLA4) improved by at least 13-fold and 31-fold, respectively, upon mixing detection antibodies with 8pG. Moreover, the nanoscale size of the antibody/8pG complex did not influence the granularity and dimension of target cells in the flow cytometry system. Collectively, we provide a quick and easy-to-operate method to make various immunoassays to sensitively detect low-abundance target molecules by just mixing their detection antibodies with 8pG.


Assuntos
Imunoensaio/normas , Anticorpos/química , Proteínas de Bactérias/química , Humanos , Imunoensaio/métodos , Limite de Detecção , Polímeros/química , Sensibilidade e Especificidade
7.
Cytokine ; 113: 340-346, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352759

RESUMO

BACKGROUND: Inhibiting TNF-α is an effective therapy for inflammatory diseases such as rheumatoid arthritis. However, systemic, nondiscriminatory neutralization of TNF-α is associated with considerable adverse effects. METHODS: Here, we developed a trimeric chimeric TNF receptor by linking an N-terminal mouse Acrp30 trimerization domain and an MMP-2/9 substrate sequence to the mouse extracellular domain of TNF receptor 2 followed by a C-terminal mouse tetranectin coiled-coil domain (mouse Acrp-MMP-TNFR-Tn). RESULTS: Here, we show that the Acrp30 trimerization domain inhibited the binding activity of TNFR, possibly by closing the binding site of the trimeric receptor. Cleavage of the substrate sequence by MMP-9, an enzyme highly expressed in inflammatory sites, restored the binding activity of the mouse TNF receptor. We also constructed a recombinant human chimeric TNF receptor (human Acrp-MMP-TNFR-Tn) in which an MMP-13 substrate sequence was used to link the human Acrp and the human TNF receptor 2. Human Acrp-MMP-TNFR-Tn showed reduced binding activity, and MMP-13 digestion recovered its binding activity with TNF-α. CONCLUSION: Acrp-masked chimeric TNF receptors may be able to be used for inflammatory tissue-selective neutralization of TNF-α to reduce the adverse effects associated with systemic neutralization of TNF-α.


Assuntos
Adiponectina , Metaloproteinase 13 da Matriz , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Multimerização Proteica , Receptores Tipo II do Fator de Necrose Tumoral , Proteínas Recombinantes de Fusão , Fator de Necrose Tumoral alfa , Adiponectina/química , Adiponectina/genética , Adiponectina/metabolismo , Animais , Linhagem Celular , Humanos , Metaloproteinase 13 da Matriz/química , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Especificidade de Órgãos , Ligação Proteica , Domínios Proteicos , Receptores Tipo II do Fator de Necrose Tumoral/química , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo
8.
Anal Chem ; 88(24): 12371-12379, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28193011

RESUMO

Sensitive determination of the pharmacokinetics of PEGylated molecules can accelerate the process of drug development. Here, we combined different anti-PEG Fab expressing 293T cells as capture cells (293T/3.3, 293T/6.3, and 293T/15-2b cells) with four detective anti-PEG antibodies (3.3, 6.3, 7A4, or 15-2b) to optimize an anti-PEG cell-based sandwich ELISA. Then, we quantified free PEG (mPEG2K-NH2 and mPEG5K-NH2) or PEG-conjugated small molecules (mPEG5K-biotin and mPEG5K-NIR797), proteins (PegIntron and Pegasys), and nanoparticles (Liposomal-Doxorubicin and quantum-dots). The combination of 293T/15-2b cells and the 7A4 detection antibody was best sensitivity for free PEG, PEG-like molecules, and PEGylated proteins with detection at ng mL-1 levels. On the other hand, 293T/3.3 cells combined with the 15-2b antibody had the highest sensitivity for quantifying Lipo-Dox at 2 ng mL-1. All three types of anti-PEG cells combined with the 15-2b antibody had high sensitivity for quantum dot quantification down to 7 pM. These results suggest that the combination of 293T/15-2b cells and 7A4 detection antibody is the optimal pair for sensitive quantification of free PEG, PEG-like molecules, and PEGylated proteins, whereas the 293T/3.3 cells combined with 15-2b are more suitable for quantifying PEGylated nanoparticles. The optimized anti-PEG cell-based sandwich ELISA can provide a sensitive, precise, and convenient tool for the quantification of a range of PEGylated molecules.


Assuntos
Biotina/análogos & derivados , Fragmentos Fab das Imunoglobulinas/química , Interferon-alfa/análise , Polietilenoglicóis/análise , Doxorrubicina/análogos & derivados , Doxorrubicina/análise , Ensaio de Imunoadsorção Enzimática/métodos , Células HEK293 , Humanos , Interferon alfa-2 , Nanopartículas/análise , Pontos Quânticos/análise , Proteínas Recombinantes/análise
9.
Anal Chem ; 88(21): 10661-10666, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27726379

RESUMO

Polyethylene glycol (PEG) is a biocompatible polymer that is often attached to therapeutic molecules to improve bioavailability and therapeutic efficacy. Although antibodies with specificity for PEG may compromise the safety and effectiveness of PEGylated medicines, the prevalence of pre-existing anti-PEG antibodies in healthy individuals is unclear. Chimeric human anti-PEG antibody standards were created to accurately measure anti-PEG IgM and IgG antibodies by direct ELISA with confirmation by a competition assay in the plasma of 1504 healthy Han Chinese donors residing in Taiwan. Anti-PEG antibodies were detected in 44.3% of healthy donors with a high prevalence of both anti-PEG IgM (27.1%) and anti-PEG IgG (25.7%). Anti-PEG IgM and IgG antibodies were significantly more common in females as compared to males (32.0% vs 22.2% for IgM, p < 0.0001 and 28.3% vs 23.0% for IgG, p = 0.018). The prevalence of anti-PEG IgG antibodies was higher in younger (up to 60% for 20 year olds) as opposed to older (20% for >50 years) male and female donors. Anti-PEG IgG concentrations were negatively associated with donor age in both females (p = 0.0073) and males (p = 0.026). Both anti-PEG IgM and IgG strongly bound PEGylated medicines. The described assay can assist in the elucidation of the impact of anti-PEG antibodies on the safety and therapeutic efficacy of PEGylated medicines.


Assuntos
Imunoglobulina G/sangue , Imunoglobulina M/sangue , Polietilenoglicóis/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Povo Asiático , Doxorrubicina/análogos & derivados , Doxorrubicina/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Interferon-alfa/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes/imunologia , Adulto Jovem
10.
ScientificWorldJournal ; 2015: 740815, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25839056

RESUMO

Glucuronidation is a major metabolism process of detoxification for carcinogens, 4-(methylnitrosamino)-1-(3-pyridy)-1-butanone (NNK) and 1,2-dimethylhydrazine (DMH), of reactive oxygen species (ROS). However, intestinal E. coli ß-glucuronidase (eßG) has been considered pivotal to colorectal carcinogenesis. Specific inhibition of eßG may prevent reactivating the glucuronide-carcinogen and protect the intestine from ROS-mediated carcinogenesis. In order to develop specific eßG inhibitors, we found that 59 candidate compounds obtained from the initial virtual screening had high inhibition specificity against eßG but not human ßG. In particular, we found that compounds 7145 and 4041 with naphthalenylidene-benzenesulfonamide (NYBS) are highly effective and selective to inhibit eßG activity. Compound 4041 (IC50 = 2.8 µM) shows a higher inhibiting ability than compound 7145 (IC50 = 31.6 µM) against eßG. Furthermore, the molecular docking analysis indicates that compound 4041 has two hydrophobic contacts to residues L361 and I363 in the bacterial loop, but 7145 has one contact to L361. Only compound 4041 can bind to key residue (E413) at active site of eßG via hydrogen-bonding interactions. These novel NYBS-based eßG specific inhibitors may provide as novel candidate compounds, which specifically inhibit eßG to reduce eßG-based carcinogenesis and intestinal injury.


Assuntos
Simulação por Computador , Descoberta de Drogas/métodos , Proteínas de Escherichia coli/antagonistas & inibidores , Glucuronidase/antagonistas & inibidores , Simulação de Acoplamento Molecular/métodos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Glucuronidase/química , Glucuronidase/metabolismo , Humanos , Estrutura Secundária de Proteína
11.
Int J Mol Sci ; 16(2): 3202-12, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25648320

RESUMO

Akt acts as a pivotal regulator in the PI3K/Akt signaling pathway and represents a potential drug target for cancer therapy. To search for new inhibitors of Akt kinase, we performed a structure-based virtual screening using the DOCK 4.0 program and the X-ray crystal structure of human Akt kinase. From the virtual screening, 48 compounds were selected and subjected to the Akt kinase inhibition assay. Twenty-six of the test compounds showed more potent inhibitory effects on Akt kinase than the reference compound, H-89. These 26 compounds were further evaluated for their cytotoxicity against HCT-116 human colon cancer cells and HEK-293 normal human embryonic kidney cells. Twelve compounds were found to display more potent or comparable cytotoxic activity compared to compound H-89 against HCT-116 colon cancer cells. The best results were obtained with Compounds a46 and a48 having IC50 values (for HCT-116) of 11.1 and 9.5 µM, respectively, and selectivity indices (IC50 for HEK-293/IC50 for HCT-116) of 12.5 and 16.1, respectively. Through structure-based virtual screening and biological evaluations, we have successfully identified several new Akt inhibitors that displayed cytotoxic activity against HCT-116 human colon cancer cells. Especially, Compounds a46 and a48 may serve as useful lead compounds for further development of new anticancer agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação por Computador , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/química , Sítios de Ligação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
12.
Taiwan J Obstet Gynecol ; 63(2): 178-185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485312

RESUMO

OBJECTIVE: Endometriosis is an estrogen-dependent chronic inflammatory disease in women of reproductive age. A review of the literature revealed that cytokines and inflammatory factors are associated with endometriosis-associated infertility. Interleukin 33 (IL-33) is a strong inducer of other pro-inflammatory cytokines. Vascular cell adhesion molecule-1 (VCAM-1) plays a central role in recruiting inflammatory cells, whose expression facilitates leukocyte adhesion and is rapidly induced by pro-inflammatory cytokines. Many studies have indicated that VCAM-1 expression is high in endometriosis; however, whether the expression of VCAM-1 is related to IL-33 is unclear. MATERIALS AND METHODS: Human ovarian endometriotic stromal cells (hOVEN-SCs) were treated with IL-33 to enable investigation of cell characterization, gene and protein expression, and signal pathways. Proliferation potential was measured using an MTT assay. Gene expression was analyzed using reverse transcription-polymerase chain reaction. Protein expression assay was performed using western blot analysis. RESULTS: This study investigated the effects of IL-33 on VCAM-1 and COX-2 expression in hOVEN-SCs. First, the results revealed that the IL-33/ST2/mitogen-activated protein kinase (MAPK) signaling pathway could increase the expression of VCAM-1 and COX-2 in hOVEN-SCs. Second, we discovered that COX-2 expression was essential for IL-33-induced VCAM-1 expression because the effects could be negated through NS398, a selective COX-2 inhibitor. Finally, treatment of IL-33-treated hOVEN-SCs with celecoxib significantly and dose-responsively decreased VCAM-1 expression. CONCLUSION: Taken together, these results indicate that IL-33 can upregulate VCAM-1 expression in hOVEN-SCs through the IL-33/ST2/MAPK/COX-2 signaling pathway and thereby contribute to endometriosis.


Assuntos
Endometriose , Molécula 1 de Adesão de Célula Vascular , Humanos , Feminino , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/farmacologia , Celecoxib/metabolismo , Celecoxib/farmacologia , Interleucina-33/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endometriose/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Células Estromais/metabolismo , Células Cultivadas
13.
Bioconjug Chem ; 24(8): 1408-13, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23837865

RESUMO

Attachment of poly(ethylene glycol) to proteins can mask immune epitopes to increase serum half-life, reduce immunogenicity, and enhance in vivo biological efficacy. However, PEGylation mediated epitope-masking may also limit sensitivity and accuracy of traditional ELISA. We previously described an anti-PEG-based sandwich ELISA for universal assay of PEGylated molecules. Here, we compared the quantitative assessment of PEGylated interferons by anti-PEG and traditional anti-interferon sandwich ELISA. The detection limits for PEG-Intron (12k-PEG) and Pegasys (40k-PEG) were 1.9 and 0.03 ng/mL for anti-PEG ELISA compared to 0.18 and 0.42 ng/mL for traditional anti-interferon sandwich ELISA. These results indicate that the anti-PEG sandwich ELISA was insensitive to PEGylation mediated epitope-masking and the sensitivity increased in proportion to the length of PEG. By contrast, PEG-masking interfered with detection by traditional anti-interferon sandwich ELISA. Human and mouse serum did not affect the sensitivity of anti-PEG ELISA but impeded traditional anti-interferon sandwich ELISA. The anti-PEG sandwich ELISA was comparable to anti-interferon sandwich ELISA and radioassay of 131I-Pegasys in pharmacokinetic studies in mice. The anti-PEG sandwich ELISA provides a sensitive, accurate, and convenient quantitative measurement of PEGylated protein drugs.


Assuntos
Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Interferons/análise , Interferons/química , Polietilenoglicóis/química , Animais , Feminino , Humanos , Interferons/sangue , Camundongos , Polietilenoglicóis/farmacocinética
14.
Taiwan J Obstet Gynecol ; 62(1): 16-21, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36720532

RESUMO

OBJECTIVE: Research has suggested that tumor-initiating tumor stem cells are derived from normal stem cells and that tumor cells undergo progressive de-differentiation to achieve a stem cell-like state. Tumor stem cells are characterized by high proliferation ability, high plasticity, expression of multi-drug resistance proteins, and the ability to seed new tumors. Octamer-binding transcription factor 4 (Oct-4) and its activation targets are overexpressed in the tumor stem cells of various types of tumors, and this expression is associated with the pathogenesis, development, and poor prognosis of tumors. The primary objective of this study was to test if a stably transfected with Oct-4 gene cell line, RL95-2/Oct-4, has the characteristics of tumor stem cells. MATERIALS AND METHODS: Human endometrial carcinoma cells (RL95-2) were transfected with a plasmid carrying genes for Oct-4 and green fluorescent protein (GFP). The stably transfected cells, RL95-2/Oct-4, were selected using G418 and observed to express the GFP reporter gene under the control of the Oct-4 promoter. GFP expression levels of RL95-2/Oct-4 cells were measured using flow cytometry. The proliferation potential of cells was determined according to cumulative population doubling and colony-formation efficiency. Gene expression was analyzed using reverse transcription-polymerase chain reaction. RESULTS: RL95-2/Oct-4 cells not only exhibited increased expression of the three most important stem cell genes, Oct-4, Nanog, and Sox2, but also had increased expression of the endometrial tumor stem cell genes CD133 and ALDH1. Furthermore, enhanced expression of these genes in the RL95-2/Oct-4 cells was associated with higher colony-forming ability and growth rate than in parental RL95-2 cells. We also observed that cisplatin induced less cell death in RL95-2/Oct-4 cells than in RL95-2 cells, indicating that RL95-2/Oct-4 cells were more resistant to chemotherapeutic agents. CONCLUSION: The study findings contribute to investigate the effects of Oct-4 on tumor stem cell origins.


Assuntos
Cisplatino , Neoplasias do Endométrio , Fator 3 de Transcrição de Octâmero , Feminino , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Resistencia a Medicamentos Antineoplásicos
15.
Nat Prod Res ; 37(13): 2172-2180, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35105219

RESUMO

Mesona procumbens Hemseley is a well-known traditional herbal medicine used for heat-related ailments. In Taiwan, boiled extracts of M. procumbens are also used as desserts called grass jelly. In this study, the hexane extract from 75% EtOH of M. procumbens showed potent activities on inhibition of E. coli ß-glucuronidase (eßG) and NO production and cytotoxicity against MCF-7 and HepG2 cancer cell lines. Furthermore, using various flash columns and HPLC chromatography on the bioactive layer led to the isolation of twelve compounds (1-12), including a new ent-kaurene, mesokaurol A (1), and a new germacrene derivative, mesogermapene A (2). Their structures were elucidated by extensive spectroscopic analyses, especially 2 D NMR and mass data. Biological assays showed that compound 9 (linolenic acid) had specific activity on inhibition of eßG (68.27%) at 100 µg/mL but was non-inhibitory to human ß-glucuronidase. Compound 1 possessed significant cytotoxicity against MCF-7 (EC50 = 9.76 µM) and HepG2 (EC50 = 8.64 µM) cancer cell lines.


Assuntos
Diterpenos do Tipo Caurano , Lamiaceae , Humanos , Diterpenos do Tipo Caurano/química , Lamiaceae/química , Escherichia coli , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Ressonância Magnética
16.
J Adv Res ; 46: 159-171, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35752438

RESUMO

INTRODUCTION: The tumor microenvironment is mainly flooded with immunosuppressive cells and inhibitory cytokines, resulting in the inability of effective immune cells to infiltrate and recognize tumors and even the loss of anti-cancer ability. OBJECTIVES: We propose a novel HDAC6/HSP90 dual inhibitory strategy as well as a chemoimmunotherapeutic agent that does not only kill tumor cells but also destroys the tumor microenvironment and enhances anti-cancer immunity. METHODS: A hybrid scaffold construction approach was leveraged to furnish a series of rationally designed resorcinol-based hydroxamates as dual selective HDAC6/HSP90 inhibitors. The drug design campaign commenced with a fragment recruitment process to pinpoint validated structural units to inhibit HDAC6 and HSP90, followed by their installation in flexible HDAC inhibitory templates via an efficient and facile multistep synthetic route. Subsequent evaluations identified a strikingly potent selective HDAC6/HSP90 dual inhibitor (compound 17) via molecular and biological analysis in vitro and in vivo. RESULTS: Compound 17 exhibited not only direct cytotoxicity to cancer cells but also downregulated immune checkpoints (PD-L1 and IDO) expression in tumors via the inhibition of STAT1 pathway and degradation of oncogene proteins (Src, AKT, Rb, and FAK), leading to in vivo tumor growth inhibition. These multiple effects enabled the effector T cells to largely infiltrate into the tumor region and release granzyme B to kill cancer cells. In addition, compound 17 also decreased TGF-ß secretion from normal cells, resulting in the systemic reduction of immunosuppressive regulatory T cells. Delightfully, a cocktail treatment of compound 17 and anti-PD-1 antibodies demonstrated synergistic efficacy to eliminate solid tumors with 83.9% of tumor growth inhibition. CONCLUSION: In summary, the impressive activity profile of compound 17, as an effective anticancer agent and a potential immunosensitizer, forecasts the application of HDAC6/HSP90 dual inhibitory strategy to overcome the immunosuppressive tumor microenvironment.


Assuntos
Antineoplásicos , Microambiente Tumoral , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Proteínas de Choque Térmico HSP90/metabolismo
17.
Stem Cells Transl Med ; 12(1): 39-53, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36610716

RESUMO

Current mesenchymal stem cell (MSC) research is based on xenotransplantation of human MSCs (hMSCs) in immunodeficient mice and cannot comprehensively predict MSC repair mechanisms and immunomodulatory effects in damaged tissue. This study compared the therapeutic efficacy, mechanisms, and immune response of hMSCs and mouse MSCs (mMSCs) in immunocompetent mice with CCl4-induced acute liver failure. mMSCs maintained F4/80+ hepatic macrophage recruitment into the damaged liver region, increased IL-6-dependent hepatocyte proliferation, and reduced inflammatory TNF-α cytokine secretion. Moreover, mMSCs reduced α-SMA+ myofibroblast activation by lowering TGF-ß1 accumulation in damaged liver tissue. In contrast, hMSCs lowered TNF-α and TGF-ß1 by reducing the recruitment of F4/80+ hepatic macrophages, which lost the ability to remove debris and induce IL-6 liver regeneration. Finally, hMSCs, but not mMSCs, caused a significant antibody response in immunocompetent mice; therefore, hMSCs are unsuitable for long-term MSC studies. This comparative study provides reference information for further MSC studies of immunocompetent mice.


Assuntos
Falência Hepática Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Humanos , Camundongos , Imunidade , Interleucina-6/farmacologia , Falência Hepática Aguda/terapia , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
18.
Eur J Med Chem ; 256: 115459, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172473

RESUMO

Monoamine oxidase A (MAO A) and heat shock protein 90 (HSP90) inhibitors have been shown to decrease the progression of glioblastoma (GBM) and other cancers. In this study, a series of MAO A/HSP90 dual inhibitors were designed and synthesized in the hope to develop more effective treatment of GBM. Compounds 4-b and 4-c are conjugates of isopropylresorcinol (pharmacophore of HSP90 inhibitor) with the phenyl group of clorgyline (MAO A inhibitor) by a tertiary amide bond substituted with methyl (4-b) or ethyl (4-c) group, respectively. They inhibited MAO A activity, HSP90 binding, and the growth of both TMZ-sensitive and -resistant GBM cells. Western blots showed that they increased HSP70 expression indicating reduced function of HSP90, reduced HER2 and phospho-Akt expression similar to MAO A or HSP90 inhibitor itself. Both compounds decreased IFN-γ induced PD-L1 expression in GL26 cells, suggesting they can act as immune checkpoint inhibitor. Further, they reduced tumor growth in GL26 mouse model. NCI-60 analysis showed they also inhibited the growth of colon cancer, leukemia, non-small cell lung and other cancers. Taken together, this study demonstrates MAO A/HSP90 dual inhibitors 4-b and 4-c reduced the growth of GBM and other cancers, and they have potential to inhibit tumor immune escape.


Assuntos
Antineoplásicos , Glioblastoma , Camundongos , Animais , Monoaminoxidase/metabolismo , Glioblastoma/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Clorgilina/farmacologia , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90
19.
J Am Chem Soc ; 134(6): 3103-10, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22239495

RESUMO

ß-glucuronidase is an attractive reporter and prodrug-converting enzyme. The development of near-IR (NIR) probes for imaging of ß-glucuronidase activity would be ideal to allow estimation of reporter expression and for personalized glucuronide prodrug cancer therapy in preclinical studies. However, NIR glucuronide probes are not yet available. In this work, we developed two fluorescent probes for detection of ß-glucuronidase activity, one for the NIR range (containing IR-820 dye) and the other for the visible range [containing fluorescein isothiocyanate (FITC)], by utilizing a difluoromethylphenol-glucuronide moiety (TrapG) to trap the fluorochromes in the vicinity of the active enzyme. ß-glucuronidase-mediated hydrolysis of the glucuronyl bond of TrapG generates a highly reactive alkylating group that facilitates the attachment of the fluorochrome to nucleophilic moieties located near ß-glucuronidase-expressing sites. FITC-TrapG was selectively trapped on purified ß-glucuronidase or ß-glucuronidase-expressing CT26 cells (CT26/mßG) but not on bovine serum albumin or non-ß-glucuronidase-expressing CT26 cells used as controls. ß-glucuronidase-activated FITC-TrapG did not interfere with ß-glucuronidase activity and could label bystander proteins near ß-glucuronidase. Both FITC-TrapG and NIR-TrapG specifically imaged subcutaneous CT26/mßG tumors, but only NIR-TrapG could image CT26/mßG tumors transplanted deep in the liver. Thus NIR-TrapG may provide a valuable tool for visualizing ß-glucuronidase activity in vivo.


Assuntos
Glucuronidase/biossíntese , Glucuronidase/química , Glucuronídeos/química , Animais , Bovinos , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Corantes Fluorescentes/química , Humanos , Fígado/patologia , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias/patologia , Pró-Fármacos/química , Soroalbumina Bovina/metabolismo , Espectrofotometria Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
20.
Bioconjug Chem ; 23(5): 881-99, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22242549

RESUMO

Attachment of poly(ethylene glycol) (PEG) to proteins, peptides, liposomes, drugs, and nanoparticles can improve pharmaceutical pharmacokinetic properties and enhance in vivo biological efficacy. Since the first PEGylated product was approved by the Food and Drug Administration in 1990, increasing numbers of PEGylated compounds have entered clinical use. Successful clinical development of PEGylated pharmaceuticals requires accurate methods for the qualitative and quantitative analysis of intact PEG conjugates in biological fluids. In this article, we review assay methods that can be utilized for the detection and measurement of PEGylated pharmaceuticals in complex biological samples for determination of biodistribution and pharmacokinetic properties. In particular, we describe relevant colorimetric, chromatographic, radiolabeled, biological, and enzyme-linked immunosorbent assays for the pharmacokinetic study of PEGylated molecules.


Assuntos
Polietilenoglicóis/análise , Animais , Cromatografia Líquida de Alta Pressão/métodos , Colorimetria/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Marcação por Isótopo/métodos , Lipossomos/química , Preparações Farmacêuticas/química , Polietilenoglicóis/farmacocinética , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA