Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Biochem ; 676: 115231, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414351

RESUMO

Protein electrophoresis in polyacrylamide gels in the presence of sodium dodecyl sulfate (SDS-PAGE) is one of the most commonly performed procedures in biochemical laboratories. It requires the use of molecular weight (MW) markers as an internal technical control and to determine the migration rate of a particular protein. In this work, we describe a simple method for preparing "homemade" prestained protein markers using readily available cow's milk and chicken egg white proteins without the need of any major protein purification step, and produce prestained MW markers ranging from 19 to 98 kDa.


Assuntos
Proteínas , Proteínas/química , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Dodecilsulfato de Sódio
2.
Glob Chang Biol ; 27(19): 4575-4591, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34118093

RESUMO

Amazonian rainforests, once thought to be pristine wilderness, are increasingly known to have been widely inhabited, modified, and managed prior to European arrival, by human populations with diverse cultural backgrounds. Amazonian Dark Earths (ADEs) are fertile soils found throughout the Amazon Basin, created by pre-Columbian societies with sedentary habits. Much is known about the chemistry of these soils, yet their zoology has been neglected. Hence, we characterized soil fertility, macroinvertebrate communities, and their activity at nine archeological sites in three Amazonian regions in ADEs and adjacent reference soils under native forest (young and old) and agricultural systems. We found 673 morphospecies and, despite similar richness in ADEs (385 spp.) and reference soils (399 spp.), we identified a tenacious pre-Columbian footprint, with 49% of morphospecies found exclusively in ADEs. Termite and total macroinvertebrate abundance were higher in reference soils, while soil fertility and macroinvertebrate activity were higher in the ADEs, and associated with larger earthworm quantities and biomass. We show that ADE habitats have a unique pool of species, but that modern land use of ADEs decreases their populations, diversity, and contributions to soil functioning. These findings support the idea that humans created and sustained high-fertility ecosystems that persist today, altering biodiversity patterns in Amazonia.


Assuntos
Ecossistema , Solo , Agricultura , Biodiversidade , Humanos , Microbiologia do Solo
3.
Microb Pathog ; 116: 109-112, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29355700

RESUMO

Aeromonas are ubiquitous in aquatic habitats. However some species can cause infections in humans, but rarely meningitis. Here we describe the isolation and characterization of an Aeromonas strain from cerebrospinal fluid of a meningitis patient. The isolate, identified as A. trota by biochemical and molecular methods, was susceptible to ampicillin but resistant to cephalothin and cefazolin. Genome sequencing revealed virulence factor genes such as type VI secretion system, aerolysin and lateral flagella. The isolate exhibited swarming motility, hemolytic activity and adhesion and cytotoxicity on HeLa cells. This is the first report of A. trota associated with meningitis and its virulence characteristics.


Assuntos
Aeromonas/classificação , Aeromonas/isolamento & purificação , Líquido Cefalorraquidiano/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Meningites Bacterianas/microbiologia , Aeromonas/genética , Aeromonas/fisiologia , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Farmacorresistência Bacteriana , Genoma Bacteriano , Humanos , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Fatores de Virulência/genética
4.
Environ Microbiol ; 18(8): 2677-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27322548

RESUMO

Herbaspirillum seropedicae is a nitrogen-fixing ß-proteobacterium that associates with roots of gramineous plants. In silico analyses revealed that H. seropedicae genome has genes encoding a putative respiratory (NAR) and an assimilatory nitrate reductase (NAS). To date, little is known about nitrate metabolism in H. seropedicae, and, as this bacterium cannot respire nitrate, the function of NAR remains unknown. This study aimed to investigate the function of NAR in H. seropedicae and how it metabolizes nitrate in a low aerated-condition. RNA-seq transcriptional profiling in the presence of nitrate allowed us to pinpoint genes important for nitrate metabolism in H. seropedicae, including nitrate transporters and regulatory proteins. Additionally, both RNA-seq data and physiological characterization of a mutant in the catalytic subunit of NAR (narG mutant) showed that NAR is not required for nitrate assimilation but is required for: (i) production of high levels of nitrite, (ii) production of NO and (iii) dissipation of redox power, which in turn lead to an increase in carbon consumption. In addition, wheat plants showed an increase in shoot dry weight only when inoculated with H. seropedicae wild type, but not with the narG mutant, suggesting that NAR is important to H. seropedicae-wheat interaction.


Assuntos
Herbaspirillum/enzimologia , Herbaspirillum/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Herbaspirillum/genética , Nitrato Redutase/genética , Raízes de Plantas/microbiologia , RNA/metabolismo , Fatores de Transcrição/metabolismo , Triticum/microbiologia
5.
Mol Microbiol ; 91(4): 751-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24329683

RESUMO

The PII family comprises a group of widely distributed signal transduction proteins. The archetypal function of PII is to regulate nitrogen metabolism in bacteria. As PII can sense a range of metabolic signals, it has been suggested that the number of metabolic pathways regulated by PII may be much greater than described in the literature. In order to provide experimental evidence for this hypothesis a PII protein affinity column was used to identify PII targets in Azospirillum brasilense. One of the PII partners identified was the biotin carboxyl carrier protein (BCCP), a component of the acetyl-CoA carboxylase which catalyses the committed step in fatty acid biosynthesis. As BCCP had been previously identified as a PII target in Arabidopsis thaliana we hypothesized that the PII -BCCP interaction would be conserved throughout Bacteria. In vitro experiments using purified proteins confirmed that the PII -BCCP interaction is conserved in Escherichia coli. The BCCP-PII interaction required MgATP and was dissociated by increasing 2-oxoglutarate. The interaction was modestly affected by the post-translational uridylylation status of PII ; however, it was completely dependent on the post-translational biotinylation of BCCP.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Azospirillum brasilense/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/enzimologia , Escherichia coli/enzimologia , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas
6.
BMC Genomics ; 15: 378, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24886190

RESUMO

BACKGROUND: The rapid growth of the world's population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB. RESULTS: We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes. CONCLUSIONS: PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability.


Assuntos
Azospirillum brasilense/genética , Triticum/genética , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Etiquetas de Sequências Expressas , Biblioteca Gênica , MicroRNAs/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , RNA/química , RNA/metabolismo , Análise de Sequência de RNA , Simbiose/genética , Transcrição Gênica , Transcriptoma , Triticum/crescimento & desenvolvimento , Regulação para Cima
7.
Proc Natl Acad Sci U S A ; 108(47): 18972-6, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22074780

RESUMO

Nitrogen metabolism in bacteria and archaea is regulated by a ubiquitous class of proteins belonging to the P(II)family. P(II) proteins act as sensors of cellular nitrogen, carbon, and energy levels, and they control the activities of a wide range of target proteins by protein-protein interaction. The sensing mechanism relies on conformational changes induced by the binding of small molecules to P(II) and also by P(II) posttranslational modifications. In the diazotrophic bacterium Azospirillum brasilense, high levels of extracellular ammonium inactivate the nitrogenase regulatory enzyme DraG by relocalizing it from the cytoplasm to the cell membrane. Membrane localization of DraG occurs through the formation of a ternary complex in which the P(II) protein GlnZ interacts simultaneously with DraG and the ammonia channel AmtB. Here we describe the crystal structure of the GlnZ-DraG complex at 2.1 Å resolution, and confirm the physiological relevance of the structural data by site-directed mutagenesis. In contrast to other known P(II) complexes, the majority of contacts with the target protein do not involve the T-loop region of P(II). Hence this structure identifies a different mode of P(II) interaction with a target protein and demonstrates the potential for P(II) proteins to interact simultaneously with two different targets. A structural model of the AmtB-GlnZ-DraG ternary complex is presented. The results explain how the intracellular levels of ATP, ADP, and 2-oxoglutarate regulate the interaction between these three proteins and how DraG discriminates GlnZ from its close paralogue GlnB.


Assuntos
Azospirillum brasilense/enzimologia , Proteínas de Bactérias/química , Modelos Moleculares , Complexos Multiproteicos/química , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/química , Conformação Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Cristalização , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Nitrogenase/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Compostos de Amônio Quaternário/metabolismo
8.
PLoS Genet ; 7(5): e1002064, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21589895

RESUMO

The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme--GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.


Assuntos
Genoma de Planta , Herbaspirillum/genética , Cromossomos de Plantas , Herbaspirillum/metabolismo , Interações Hospedeiro-Patógeno , Fixação de Nitrogênio , Pressão Osmótica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Biochim Biophys Acta ; 1814(9): 1203-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21645649

RESUMO

The ammonium transport family Amt/Rh comprises ubiquitous integral membrane proteins that facilitate ammonium movement across biological membranes. Besides their role in transport, Amt proteins also play a role in sensing the levels of ammonium in the environment, a process that depends on complex formation with cytosolic proteins of the P(II) family. Trimeric P(II) proteins from a variety of organisms undergo a cycle of reversible posttranslational modification according to the prevailing nitrogen supply. In proteobacteria, P(II) proteins are subjected to reversible uridylylation of each monomer. In this study we used the purified proteins from Azospirillum brasilense to analyze the effect of P(II) uridylylation on the protein's ability to engage complex formation with AmtB in vitro. Our results show that partially uridylylated P(II) trimers can interact with AmtB in vitro, the implication of this finding in the regulation of nitrogen metabolism is discussed. We also report an improved expression and purification protocol for the A. brasilense AmtB protein that might be applicable to AmtB proteins from other organisms.


Assuntos
Azospirillum brasilense/química , Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Uridina Monofosfato/química
10.
Microbiology (Reading) ; 158(Pt 1): 176-190, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22210804

RESUMO

The fixation of atmospheric nitrogen by the prokaryotic enzyme nitrogenase is an energy- expensive process and consequently it is tightly regulated at a variety of levels. In many diazotrophs this includes post-translational regulation of the enzyme's activity, which has been reported in both bacteria and archaea. The best understood response is the short-term inactivation of nitrogenase in response to a transient rise in ammonium levels in the environment. A number of proteobacteria species effect this regulation through reversible ADP-ribosylation of the enzyme, but other prokaryotes have evolved different mechanisms. Here we review current knowledge of post-translational control of nitrogenase and show that, for the response to ammonium, the P(II) signal transduction proteins act as key players.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Nitrogenase/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Transdução de Sinais , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Nitrogenase/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Processamento de Proteína Pós-Traducional
11.
Microbiology (Reading) ; 158(Pt 6): 1656-1663, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22461486

RESUMO

Proteins belonging to the P(II) family coordinate cellular nitrogen metabolism by direct interaction with a variety of enzymes, transcriptional regulators and transporters. The sensing function of P(II) relies on its ability to bind the nitrogen/carbon signalling molecule 2-oxoglutarate (2-OG). In Proteobacteria, P(II) is further subject to reversible uridylylation according to the intracellular levels of glutamine, which reflect the cellular nitrogen status. A number of P(II) proteins have been shown to bind ADP and ATP in a competitive manner, suggesting that P(II) might act as an energy sensor. Here, we analyse the influence of the ADP/ATP ratio, 2-OG levels and divalent metal ions on in vitro uridylylation of the Azospirillum brasilense P(II) proteins GlnB and GlnZ, and on interaction with their targets AmtB, DraG and DraT. The results support the notion that the cellular concentration of 2-OG is a key factor governing occupation of the GlnB and GlnZ nucleotide binding sites by ATP or ADP, with high 2-OG levels favouring the occupation of P(II) by ATP. Both P(II) uridylylation and interaction with target proteins responded to the ADP/ATP ratio within the expected physiological range, supporting the concept that P(II) proteins might act as cellular energy sensors.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Cátions Bivalentes/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Azospirillum brasilense/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas PII Reguladoras de Nitrogênio/genética , Transdução de Sinais
12.
Arch Microbiol ; 194(8): 643-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22382722

RESUMO

PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Herbaspirillum/enzimologia , Ácidos Cetoglutáricos/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Herbaspirillum/metabolismo , Nitrogênio/metabolismo , Nucleotidiltransferases/metabolismo , Ligação Proteica , Transdução de Sinais
13.
BMC Microbiol ; 11: 230, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21999748

RESUMO

BACKGROUND: Herbaspirillum seropedicae SmR1 is a nitrogen fixing endophyte associated with important agricultural crops. It produces polyhydroxybutyrate (PHB) which is stored intracellularly as granules. However, PHB metabolism and regulatory control is not yet well studied in this organism. RESULTS: In this work we describe the characterization of the PhbF protein from H. seropedicae SmR1 which was purified and characterized after expression in E. coli. The purified PhbF protein was able to bind to eleven putative promoters of genes involved in PHB metabolism in H. seropedicae SmR1. In silico analyses indicated a probable DNA-binding sequence which was shown to be protected in DNA footprinting assays using purified PhbF. Analyses using lacZ fusions showed that PhbF can act as a repressor protein controlling the expression of PHB metabolism-related genes. CONCLUSIONS: Our results indicate that H. seropedicae SmR1 PhbF regulates expression of phb-related genes by acting as a transcriptional repressor. The knowledge of the PHB metabolism of this plant-associated bacterium may contribute to the understanding of the plant-colonizing process and the organism's resistance and survival in planta.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Herbaspirillum/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Proteínas de Bactérias/química , Sequência de Bases , Proteínas de Ligação a DNA/genética , Herbaspirillum/genética , Dados de Sequência Molecular , Ligação Proteica
14.
BMC Microbiol ; 11: 8, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21223584

RESUMO

BACKGROUND: The PII protein family comprises homotrimeric proteins which act as transducers of the cellular nitrogen and carbon status in prokaryotes and plants. In Herbaspirillum seropedicae, two PII-like proteins (GlnB and GlnK), encoded by the genes glnB and glnK, were identified. The glnB gene is monocistronic and its expression is constitutive, while glnK is located in the nlmAglnKamtB operon and is expressed under nitrogen-limiting conditions. RESULTS: In order to determine the involvement of the H. seropedicae glnB and glnK gene products in nitrogen fixation, a series of mutant strains were constructed and characterized. The glnK- mutants were deficient in nitrogen fixation and they were complemented by plasmids expressing the GlnK protein or an N-truncated form of NifA. The nitrogenase post-translational control by ammonium was studied and the results showed that the glnK mutant is partially defective in nitrogenase inactivation upon addition of ammonium while the glnB mutant has a wild-type phenotype. CONCLUSIONS: Our results indicate that GlnK is mainly responsible for NifA activity regulation and ammonium-dependent post-translational regulation of nitrogenase in H. seropedicae.


Assuntos
Proteínas de Bactérias/metabolismo , Herbaspirillum/genética , Herbaspirillum/metabolismo , Fixação de Nitrogênio , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Mutagênese , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Regiões Promotoras Genéticas , Compostos de Amônio Quaternário/metabolismo
15.
mSystems ; 5(6)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144311

RESUMO

The PII family comprises a group of widely distributed signal transduction proteins ubiquitous in prokaryotes and in the chloroplasts of plants. PII proteins sense the levels of key metabolites ATP, ADP, and 2-oxoglutarate, which affect the PII protein structure and thereby the ability of PII to interact with a range of target proteins. Here, we performed multiple ligand fishing assays with the PII protein orthologue GlnZ from the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense to identify 37 proteins that are likely to be part of the PII protein-protein interaction network. Among the PII targets identified were enzymes related to nitrogen and fatty acid metabolism, signaling, coenzyme synthesis, RNA catabolism, and transcription. Direct binary PII-target complex was confirmed for 15 protein complexes using pulldown assays with recombinant proteins. Untargeted metabolome analysis showed that PII is required for proper homeostasis of important metabolites. Two enzymes involved in c-di-GMP metabolism were among the identified PII targets. A PII-deficient strain showed reduced c-di-GMP levels and altered aerotaxis and flocculation behavior. These data support that PII acts as a major metabolic hub controlling important enzymes and the homeostasis of key metabolites such as c-di-GMP in response to the prevailing nutritional status.IMPORTANCE The PII proteins sense and integrate important metabolic signals which reflect the cellular nutrition and energy status. Such extraordinary ability was capitalized by nature in such a way that the various PII proteins regulate different facets of metabolism by controlling the activity of a range of target proteins by protein-protein interactions. Here, we determined the PII protein interaction network in the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense The interactome data along with metabolome analysis suggest that PII functions as a master metabolic regulator hub. We provide evidence that PII proteins act to regulate c-di-GMP levels in vivo and cell motility and adherence behaviors.

16.
Genome Biol Evol ; 11(6): 1658-1662, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135033

RESUMO

We report the complete genome sequence of Bacillus sp. strain ABP14 isolated from lignocellulosic compost and selected by its ability in hydrolyzing carboxymethyl cellulose. This strain does not produce a Cry-like protein but showed an insecticidal activity against larvae of Anticarsia gemmatalis (Lepidoptera). Genome-based taxonomic analysis revealed that the ABP14 chromosome is genetically close to Bacillus thuringiensis serovar finitimus YBT020. ABP14 also carries one plasmid which showed no similarity with those from YBT020. Genome analysis of ABP14 identified unique genes related to cell surface structures, cell wall, metabolic competence, and virulence factors that may contribute for its survival and environmental adaptation, as well as its entomopathogenic activity.


Assuntos
Bacillus/genética , Genoma Bacteriano , Animais , Bacillus/classificação , Bacillus/metabolismo , Brasil , Carboximetilcelulose Sódica/metabolismo , Compostagem , Larva/microbiologia , Lignina/metabolismo , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia
17.
Biochim Biophys Acta Proteins Proteom ; 1866(12): 1216-1223, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30287221

RESUMO

The nitrogen metabolism of Proteobacteria is controlled by the general Ntr system in response to nitrogen quality and availability. The PII proteins play an important role in this system by modulating the cellular metabolism through physical interaction with protein partners. Herbaspirillum seropedicae, a nitrogen-fixing bacterium, has two PII proteins paralogues, GlnB and GlnK. The interaction of H. seropedicae PII proteins with its targets is regulated by allosteric ligands and by reversible post-translational uridylylation. Both uridylylation and deuridylylation reactions are catalyzed by the same bifunctional enzyme, GlnD. The mechanism of regulation of GlnD activity is still not fully understood. Here, we characterized the regulation of deuridylylation activity of H. seropedicae GlnD in vitro. To this purpose, fully modified PII proteins were submitted to kinetics analysis of its deuridylylation catalyzed by purified GlnD. The deuridylylation activity was strongly stimulated by glutamine and repressed by 2-oxoglutarate and this repression was strong enough to overcome the glutamine stimulus of enzymatic activity. We also constructed and analyzed a truncated version of GlnD, lacking the C-terminal regulatory ACT domains. The GlnDΔACT protein catalyzed the futile cycle of uridylylation and deuridylylation of PII, regardless of glutamine and 2-oxoglutarate levels. The results presented here suggest that GlnD can sense the glutamine:2-oxoglutarate ratio and confirm that the ACT domains of GlnD are the protein sensors of environment clues of nitrogen availability.


Assuntos
Proteínas de Bactérias/metabolismo , Glutamina/metabolismo , Herbaspirillum/enzimologia , Ácidos Cetoglutáricos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Glutamina/química , Ácidos Cetoglutáricos/química , Cinética , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
18.
FEBS Lett ; 580(22): 5232-6, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-16963029

RESUMO

In Azospirillum brasilense ADP-ribosylation of dinitrogenase reductase (NifH) occurs in response to addition of ammonium to the extracellular medium and is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG). The P(II) proteins GlnB and GlnZ have been implicated in regulation of DraT and DraG by an as yet unknown mechanism. Using pull-down experiments with His-tagged versions of DraT and DraG we have now shown that DraT binds to GlnB, but only to the deuridylylated form, and that DraG binds to both the uridylylated and deuridylylated forms of GlnZ. The demonstration of these specific protein complexes, together with our recent report of the ability of deuridylylated GlnZ to be sequestered to the cell membrane by the ammonia channel protein AmtB, offers new insights into the control of NifH ADP-ribosylation.


Assuntos
Azospirillum brasilense/enzimologia , Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Oxirredutases/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Azospirillum brasilense/genética , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/genética , Ativação Enzimática/fisiologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Oxirredutases/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Ligação Proteica/fisiologia
19.
FEBS J ; 283(21): 3919-3930, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634462

RESUMO

Herbaspirillum seropedicae is a diazotrophic ß-Proteobacterium found endophytically associated with gramineae (Poaceae or graminaceous plants) such as rice, sorghum and sugar cane. In this work we show that nitrate-dependent growth in this organism is regulated by the master nitrogen regulatory two-component system NtrB-NtrC, and by NtrY-NtrX, which functions to specifically regulate nitrate metabolism. NtrY is a histidine kinase sensor protein predicted to be associated with the membrane and NtrX is the response regulator partner. The ntrYntrX genes are widely distributed in Proteobacteria. In α-Proteobacteria they are frequently located downstream from ntrBC, whereas in ß-Proteobacteria these genes are located downstream from genes encoding an RNA methyltransferase and a proline-rich protein with unknown function. The NtrX protein of α-Proteobacteria has an AAA+ domain, absent in those from ß-Proteobacteria. An ntrY mutant of H. seropedicae showed the wild-type nitrogen fixation phenotype, but the nitrate-dependent growth was abolished. Gene fusion assays indicated that NtrY is involved in the expression of genes coding for the assimilatory nitrate reductase as well as the nitrate-responsive two-component system NarX-NarL (narK and narX promoters, respectively). The purified NtrX protein was capable of binding the narK and narX promoters, and the binding site at the narX promoter for the NtrX protein was determined by DNA footprinting. In silico analyses revealed similar sequences in other promoter regions of H. seropedicae that are related to nitrate assimilation, supporting the role of the NtrY-NtrX system in regulating nitrate metabolism in H. seropedicae.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Herbaspirillum/metabolismo , Nitratos/metabolismo , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Herbaspirillum/genética , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Front Microbiol ; 7: 739, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242754

RESUMO

Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50% in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA