Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Phys Chem Chem Phys ; 26(22): 16184-16190, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38804157

RESUMO

Ultrathin lead films on metallic and semiconductor substrates are technologically demanded and actively studied by different experimental and theoretical methods. The formation of these films gives rise to new adsorbate-induced electron states and vibrational modes. The dynamical properties of atoms on surfaces depend sensitively on their bonding environment and thus provide valuable insight into the local geometry and chemical bonding at the boundary of a solid. In this paper, the vibrational properties of the , (3 × 3) and (4 × 4) overlayers formed by the adsorption of 1/3, 4/9, and 9/16 Pb ML, respectively, on the Ni(111) surface were studied for the first time. The surface relaxations, phonon modes and the local density of states were analyzed. We revealed the role of substrate dynamics in the stability of the Pb/Ni(111) system at submonolayer Pb adsorption.

2.
Nano Lett ; 18(10): 6521-6529, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30260648

RESUMO

Magnetic proximity effect at the interface between magnetic and topological insulators (MIs and TIs) is considered to have great potential in spintronics as, in principle, it allows realizing the quantum anomalous Hall and topological magneto-electric effects (QAHE and TME). Although an out-of-plane magnetization induced in a TI by the proximity effect was successfully probed in experiments, first-principles calculations reveal that a strong electrostatic potential mismatch at abrupt MI/TI interfaces creates harmful trivial states rendering both the QAHE and TME unfeasible in practice. Here on the basis of recent progress in formation of planar self-assembled single layer MI/TI heterostructure (T. Hirahara et al. Nano Lett. 2017 , 17 , 3493 - 3500 ), we propose a conceptually new type of the MI/TI interfaces by means of density functional theory calculations. By considering MnSe/Bi2Se3, MnTe/Bi2Te3, and EuS/Bi2Se3 we demonstrate that, instead of a sharp MI/TI interface clearly separating the two subsystems, it is energetically far more favorable to form a built-in interface via insertion of the MI film inside the TI's surface quintuple layer (e.g., Se-Bi-Se-[MnSe]-Bi-Se) where it forms a bulk-like MI structure. This results in a smooth MI-to-TI connection that yields the interface electronic structure essentially free of trivial states. Our findings open a new direction in studies of the MI/TI interfaces and restore their potential for the QAHE and TME observation.

3.
Nano Lett ; 18(3): 1564-1574, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29365269

RESUMO

A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.

4.
Chemphyschem ; 19(18): 2405-2410, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29847012

RESUMO

Topological insulators are promising candidates for spintronic applications due to their topologically protected, spin-momentum locked and gapless surface states. The breaking of the time-reversal symmetry after the introduction of magnetic impurities, such as 3d transition metal atoms embedded in two-dimensional molecular networks, could lead to several phenomena interesting for device fabrication. The first step towards the fabrication of metal-organic coordination networks on the surface of a topological insulator is to investigate the adsorption of the pure molecular layer, which is the aim of this study. Here, the effect of the deposition of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on the surface of a prototypical topological insulator, bismuth selenide (Bi2 Se3 ), is investigated. Scanning tunneling microscope images at low-temperature reveal the formation of a highly ordered two-dimensional molecular network. The essentially unperturbed electronic structure of the topological insulator observed by photoemission spectroscopy measurements demonstrates a negligible charge transfer between the molecular layer and the substrate. Density functional theory calculations confirm the picture of a weakly interacting adsorbed molecular layer. These results reveal significant potential of TCNQ for the realization of metal-organic coordination networks on the topological insulator surface.

5.
Nano Lett ; 17(6): 3493-3500, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28545300

RESUMO

Inducing magnetism into topological insulators is intriguing for utilizing exotic phenomena such as the quantum anomalous Hall effect (QAHE) for technological applications. While most studies have focused on doping magnetic impurities to open a gap at the surface-state Dirac point, many undesirable effects have been reported to appear in some cases that makes it difficult to determine whether the gap opening is due to the time-reversal symmetry breaking or not. Furthermore, the realization of the QAHE has been limited to low temperatures. Here we have succeeded in generating a massive Dirac cone in a MnBi2Se4/Bi2Se3 heterostructure, which was fabricated by self-assembling a MnBi2Se4 layer on top of the Bi2Se3 surface as a result of the codeposition of Mn and Se. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the fabricated MnBi2Se4/Bi2Se3 heterostructure shows ferromagnetism up to room temperature and a clear Dirac cone gap opening of ∼100 meV without any other significant changes in the rest of the band structure. It can be considered as a result of the direct interaction of the surface Dirac cone and the magnetic layer rather than a magnetic proximity effect. This spontaneously formed self-assembled heterostructure with a massive Dirac spectrum, characterized by a nontrivial Chern number C = -1, has a potential to realize the QAHE at significantly higher temperatures than reported up to now and can serve as a platform for developing future "topotronics" devices.

6.
Nano Lett ; 17(2): 811-820, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28032768

RESUMO

Finding ways to create and control the spin-dependent properties of two-dimensional electron states (2DESs) is a major challenge for the elaboration of novel spin-based devices. Spin-orbit and exchange-magnetic interactions (SOI and EMI) are two fundamental mechanisms that enable access to the tunability of spin-dependent properties of carriers. The silicon surface of HoRh2Si2 appears to be a unique model system, where concurrent SOI and EMI can be visualized and controlled by varying the temperature. The beauty and simplicity of this system lie in the 4f moments, which act as a multiple tuning instrument on the 2DESs, as the 4f projections parallel and perpendicular to the surface order at essentially different temperatures. Here we show that the SOI locks the spins of the 2DESs exclusively in the surface plane when the 4f moments are disordered: the Rashba-Bychkov effect. When the temperature is gradually lowered and the system experiences magnetic order, the rising EMI progressively competes with the SOI leading to a fundamental change in the spin-dependent properties of the 2DESs. The spins rotate and reorient toward the out-of-plane Ho 4f moments. Our findings show that the direction of the spins and the spin-splitting of the two-dimensional electrons at the surface can be manipulated in a controlled way by using only one parameter: the temperature.

7.
Nano Lett ; 16(1): 80-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26678677

RESUMO

Topological insulators (TIs) represent a novel quantum state of matter, characterized by edge or surface-states, showing up on the topological character of the bulk wave functions. Allowing electrons to move along their surface, but not through their inside, they emerged as an intriguing material platform for the exploration of exotic physical phenomena, somehow resembling the graphene Dirac-cone physics, as well as for exciting applications in optoelectronics, spintronics, nanoscience, low-power electronics, and quantum computing. Investigation of topological surface states (TSS) is conventionally hindered by the fact that in most of experimental conditions the TSS properties are mixed up with those of bulk-states. Here, we activate, probe, and exploit the collective electronic excitation of TSS in the Dirac cone. By engineering Bi2Te(3-x)Sex stoichiometry, and by gating the surface of nanoscale field-effect-transistors, exploiting thin flakes of Bi2Te2.2Se0.8 or Bi2Se3, we provide the first demonstration of room-temperature terahertz (THz) detection mediated by overdamped plasma-wave oscillations on the "activated" TSS of a Bi2Te2.2Se0.8 flake. The reported detection performances allow a realistic exploitation of TSS for large-area, fast imaging, promising superb impacts on THz photonics.

8.
Nano Lett ; 16(6): 3409-14, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27010705

RESUMO

Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.

9.
Nano Lett ; 16(7): 4535-43, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27248659

RESUMO

The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications.

10.
Nano Lett ; 15(4): 2396-401, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25734657

RESUMO

With the discovery and first characterization of graphene, its potential for spintronic applications was recognized immediately. Since then, an active field of research has developed trying to overcome the practical hurdles. One of the most severe challenges is to find appropriate interfaces between graphene and ferromagnetic layers, which are granting efficient injection of spin-polarized electrons. Here, we show that graphene grown under appropriate conditions on Co(0001) demonstrates perfect structural properties and simultaneously exhibits highly spin-polarized charge carriers. The latter was conclusively proven by observation of a single-spin Dirac cone near the Fermi level. This was accomplished experimentally using spin- and angle-resolved photoelectron spectroscopy, and theoretically with density functional calculations. Our results demonstrate that the graphene/Co(0001) system represents an interesting candidate for applications in devices using the spin degree of freedom.

11.
Phys Rev Lett ; 112(5): 057601, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580629

RESUMO

By means of spin- and angle-resolved photoelectron spectroscopy we studied the spin structure of thin films of the topological insulator Bi2Se3 grown on InP(111). For thicknesses below six quintuple layers the spin-polarized metallic topological surface states interact with each other via quantum tunneling and a gap opens. Our measurements show that the resulting surface states can be described by massive Dirac cones which are split in a Rashba-like manner due to the substrate induced inversion asymmetry. The inner and the outer Rashba branches have distinct localization in the top and the bottom part of the film, whereas the band apices are delocalized throughout the entire film. Supported by calculations, our observations help in the understanding of the evolution of the surface states at the topological phase transition and provide the groundwork for the realization of two-dimensional spintronic devices based on topological semiconductors.

12.
Chem Mater ; 36(6): 2898-2906, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38558914

RESUMO

Grain boundaries (GBs) play an important role in determining the optoelectronic properties of perovskites, requiring an atomistic understanding of the underlying mechanisms. Strain engineering has recently been employed in perovskite solar cells, providing a novel perspective on the role of perovskite GBs. Here, we theoretically investigate the impact of axial strain on the geometric and electronic properties of a common CsPbBr3 GB. We develop a machine learning force field and perform ab initio calculations to analyze the behavior of GB models with different axial strains on a nanosecond time scale. Our results demonstrate that compressing the GB efficiently suppresses structural fluctuations and eliminates trap states originating from large-scale distortions. The GB becomes more amorphous under compressive strain, which makes the relationship between the electronic structure and axial strain nonmonotonic. These results can help clarify the conflicts in perovskite GB experiments.

13.
J Phys Chem Lett ; 15(13): 3611-3618, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530095

RESUMO

Further improving the activity and selectivity of photocatalytic CO2 reduction remains a challenge. Herein, we propose a new strategy for synergistically promoting photocatalytic CO2 reduction by combining two-dimensional (2D) ferroelectric polarization and single-atom catalysis. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the separation and migration of photogenerated carriers, which provides a prerequisite for enhancing the photocatalytic efficiency. In addition, the introduction of single Ag atoms can act as an electron reservoir to significantly modify the bonding configurations on the surface through proper static electron transfer, thus effectively promoting the adsorption and activation of CO2 molecules. More importantly, we found that switching the ferroelectric polarization can synergistically optimize the limiting potential as well as control the final products. This study provides a new approach for enhancing the catalytic activity and selectivity of photocatalytic CO2 reduction.

14.
Phys Rev Lett ; 111(20): 206803, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24289701

RESUMO

A topological surface state that is protected physically under the Bi2Te3-like five-layer block has been revealed on the Pb-based topological insulator (TI) PbBi4Te7 by bulk sensitive angle-resolved photoelectron spectroscopy (ARPES). Furthermore, conservation of the spin polarization of the hidden topological surface states is directly confirmed by bulk-sensitive spin ARPES observation. This finding paves the way to realize the real spintronics devices by TIs that are operable in the real environment.

15.
Materials (Basel) ; 17(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203917

RESUMO

We calculate, within the density-functional theory, the atomic and electronic structure of the clean Pt(111) and Au(111) surfaces and the nML-Au/Pt(111) systems with n varying from one to three. The effect of the spin-orbital interaction was taken into account. Several new electronic states with strong localization in the surface region were found and discussed in the case of clean surfaces. The Au adlayers introduce numerous quantum well states in the energy regions corresponding to the projected bulk band continuum of Au(111). Moreover, the presence of states resembling the true Au(111) surface states can be detected at n = 2 and 3. The Au/Pd interface states are found as well. In nML-Au/Pt(111), the calculated work function presents a small variation with a variation of the number of the Au atomic layer. Nevertheless, the effect is significantly smaller in comparison to the s-p metals.

16.
Phys Rev Lett ; 109(11): 116403, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005655

RESUMO

BiTeI has a layered and noncentrosymmetric structure where strong spin-orbit interaction leads to a giant Rashba spin splitting in the bulk bands. We present direct measurements of the bulk band structure obtained with soft x-ray angle-resolved photoemission (ARPES), revealing the three-dimensional Fermi surface. The observed spindle torus shape bears the potential for a topological transition in the bulk by hole doping. Moreover, the bulk electronic structure is clearly disentangled from the two-dimensional surface electronic structure by means of high-resolution and spin-resolved ARPES measurements in the ultraviolet regime. All findings are supported by ab initio calculations.

17.
Nanomaterials (Basel) ; 13(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616051

RESUMO

In this work, we study, in the framework of the ab initio linear-response time-dependent density functional theory, the low-energy collective electronic excitations with characteristic sound-like dispersion, called acoustic plasmons, in bulk ferromagnetic nickel. Since the respective spatial oscillations in slow and fast charge systems involve states with different spins, excitation of such plasmons in nickel should result in the spatial variations in the spin structure as well. We extend our study to NiHx with different hydrogen concentrations x. We vary the hydrogen concentration and trace variations in the acoustic plasmons properties. Finally, at x=1 the acoustic modes disappear in paramagnetic NiH. The explanation of such evolution is based on the changes in the population of different energy bands with hydrogen content variation.

18.
Nanomaterials (Basel) ; 13(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36615948

RESUMO

Using relativistic spin-polarized density functional theory calculations we investigate magnetism, electronic structure and topology of the ternary thallium gadolinium dichalcogenides TlGdZ2 (Z= Se and Te) as well as superlattices on their basis. We find TlGdZ2 to have an antiferromagnetic exchange coupling both within and between the Gd layers, which leads to frustration and a complex magnetic structure. The electronic structure calculations reveal both TlGdSe2 and TlGdTe2 to be topologically trivial semiconductors. However, as we show further, a three-dimensional (3D) magnetic topological insulator (TI) state can potentially be achieved by constructing superlattices of the TlGdZ2/(TlBiZ2)n type, in which structural units of TlGdZ2 are alternated with those of the isomorphic TlBiZ2 compounds, known to be non-magnetic 3D TIs. Our results suggest a new approach for achieving 3D magnetic TI phases in such superlattices which is applicable to a large family of thallium rare-earth dichalcogenides and is expected to yield a fertile and tunable playground for exotic topological physics.

19.
ACS Nano ; 16(3): 3573-3581, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35156797

RESUMO

The f-driven temperature scales at the surfaces of strongly correlated materials have increasingly come into the focus of research efforts. Here, we unveil the emergence of a two-dimensional Ce Kondo lattice, which couples ferromagnetically to the ordered Co lattice below the P-terminated surface of the antiferromagnet CeCo2P2. In its bulk, Ce is passive and behaves tetravalently. However, because of symmetry breaking and an effective magnetic field caused by an uncompensated ferromagnetic Co layer, the Ce 4f states become partially occupied and spin-polarized near the surface. The momentum-resolved photoemission measurements indicate a strong admixture of the Ce 4f states to the itinerant bands near the Fermi level including surface states that are split by exchange interaction with Co. The temperature-dependent measurements reveal strong changes of the 4f intensity at the Fermi level in accordance with the Kondo scenario. Our findings show how rich and diverse the f-driven properties can be at the surface of materials without f-physics in the bulk.

20.
J Phys Chem Lett ; 12(37): 9068-9075, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34516738

RESUMO

We report on structural and electronic properties of superconducting nanohybrids made of Pb grown in the ultrahigh vacuum on the atomically clean surface of single crystals of topological Bi2Te3. In situ scanning tunneling microscopy and spectroscopy demonstrated that the resulting network is composed of Pb-nanoislands dispersed on the surface and linked together by an amorphous atomic layer of Pb, which wets Bi2Te3. As a result, the superconducting state of the system is characterized by a thickness-dependent superconducting gap of Pb-islands and by a very unusual position-independent proximity gap between them. Furthermore, the data analysis and DFT calculations demonstrate that the Pb-wetting layer leads to significant modifications of both topological and trivial electronic states of Bi2Te3, which are responsible for the observed long-range proximity effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA