RESUMO
Human embryonic stem cells (HESCs) are unique in their capacity to self-renew while remaining pluripotent. This undifferentiated state must be actively maintained by secreted factors. To identify autocrine factors that may support HESC growth, we have taken a global genetic approach. Microarray analysis identified fibroblast growth factor 4 (FGF4) as a prime candidate for autocrine signaling. Furthermore, the addition of recombinant FGF4 to HESCs supports their proliferation. We show that FGF4 is produced by multiple undifferentiated HESC lines, along with a novel fibroblast growth factor 4 splice isoform (FGF4si) that codes for the amino-terminal half of FGF4. Strikingly, although FGF4 supports the undifferentiated growth of HESCs, FGF4si effectively counters its effect. Furthermore, we show that FGF4si is an antagonist of FGF4, shutting down FGF4-induced Erk1/2 phosphorylation. Expression analysis shows that both isoforms are expressed in HESCs and early differentiated cells. However, whereas FGF4 ceases to be expressed in mature differentiated cells, FGF4si continues to be expressed after cell differentiation. Targeted knockdown of FGF4 using small interfering RNA increased differentiation of HESCs, demonstrating the importance of endogenous FGF4 signaling in maintaining their pluripotency. Taken together, these results suggest a growth-promoting role for FGF4 in HESCs and a putative feedback inhibition mechanism by a novel FGF4 splice isoform that may serve to promote differentiation at later stages of development.
Assuntos
Processamento Alternativo/genética , Células-Tronco Embrionárias/citologia , Fator 4 de Crescimento de Fibroblastos/genética , Animais , Comunicação Autócrina/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/enzimologia , Ativação Enzimática/efeitos dos fármacos , Fator 4 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacologiaRESUMO
The association of fibroblast growth factor receptor 3 (FGFR3) expression with t(4;14) multiple myeloma (MM) and the demonstration of the transforming potential of this receptor tyrosine kinase (RTK) make it a particularly attractive target for drug development. We report here a novel and highly specific anti-FGFR3-neutralizing antibody (PRO-001). PRO-001 binds to FGFR3 expressed on transformed cells and inhibits FGFR3 autophosphorylation and downstream signaling. The antibody inhibited the growth of FGFR3-expressing FDCP cells (IC(50) of 0.5 microg/mL) but not that of cells expressing FGFR1 or FGFR2, and potently inhibited FGFR3-dependent solid tumor growth in a mouse xenograft model. Furthermore, PRO-001 inhibited the growth of the FGFR3-expressing, human myeloma cell line, UTMC2. Inhibition of viability was still observed when cells were cocultured with stroma or in the presence of IL-6 or IGF-1. PRO-001 did not inhibit constitutive activation of K650E, G384D, and Y373C FGFR3 in myeloma cell lines and failed to inhibit the growth of these cells. Most importantly, however, PRO-001 induced cytotoxic responses in primary t(4;14)(+) MM samples with an increase in apoptotic index of 20% to 80% as determined by annexin V staining. The data demonstrate that PRO-001 is a potent and specific inhibitor of FGFR3 and deserves further study for the treatment of FGFR3-expressing myeloma.
Assuntos
Anticorpos/farmacologia , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 4 , Mieloma Múltiplo/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Translocação Genética , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Transplante HeterólogoRESUMO
The human combinatorial antibody library Fab 1 (HuCAL-Fab 1) was generated by transferring the heavy and light chain variable regions from the previously constructed single-chain Fv library (Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A., and Virnekäs, B. (2000) J. Mol. Biol. 296, 57-86), diversified in both complementarity-determining regions 3 into a novel Fab display vector, yielding 2.1 x 10(10) different antibody fragments. The modularity has been retained in the Fab display and screening plasmids, ensuring rapid conversion into various antibody formats as well as antibody optimization using prebuilt maturation cassettes. HuCAL-Fab 1 was challenged against the human fibroblast growth factor receptor 3, a potential therapeutic antibody target, against which, to the best of our knowledge, no functional antibodies could be generated so far. A unique screening mode was designed utilizing recombinant functional proteins and cell lines differentially expressing fibroblast growth factor receptor isoforms diversified in expression and receptor dependence. Specific Fab fragments with subnanomolar affinities were isolated by selection without any maturation steps as determined by fluorescence flow cytometry. Some of the selected Fab fragments completely inhibit target-mediated cell proliferation, rendering them the first monoclonal antibodies against fibroblast growth factor receptors having significant function blocking activity. This study validates HuCAL-Fab 1 as a valuable source for the generation of target-specific antibodies for therapeutic applications.