Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831106

RESUMO

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Microambiente Tumoral , Animais , Humanos , Imunoterapia Adotiva/métodos , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Camundongos , Microambiente Tumoral/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Linfócitos T Reguladores/imunologia , Transdução de Sinais , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/terapia , Camundongos Knockout
2.
Radiology ; 310(2): e231406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38411517

RESUMO

Background Chimeric antigen receptor (CAR) T cells are a promising cancer therapy; however, reliable and repeatable methods for tracking and monitoring CAR T cells in vivo remain underexplored. Purpose To investigate direct and indirect imaging strategies for tracking the biodistribution of CAR T cells and monitoring their therapeutic effect in target tumors. Materials and Methods CAR T cells co-expressing a tumor-targeting gene (anti-CD19 CAR) and a human somatostatin receptor subtype 2 (hSSTr2) reporter gene were generated from human peripheral blood mononuclear cells. After direct labeling with zirconium 89 (89Zr)-p-isothiocyanatobenzyl-desferrioxamine (DFO), CAR T cells were intravenously injected into immunodeficient mice with a CD19-positive and CD19-negative human tumor xenograft on the left and right flank, respectively. PET/MRI was used for direct in vivo imaging of 89Zr-DFO-labeled CAR T cells on days 0, 1, 3, and 7 and for indirect cell imaging with the radiolabeled somatostatin receptor-targeted ligand gallium 68 (68Ga)-DOTA-Tyr3-octreotide (DOTATOC) on days 6, 9, and 13. On day 13, mice were euthanized, and tissues and tumors were excised. Results The 89Zr-DFO-labeled CAR T cells were observed on PET/MRI scans in the liver and lungs of mice (n = 4) at all time points assessed. However, they were not visualized in CD19-positive or CD19-negative tumors, even on day 7. Serial 68Ga-DOTATOC PET/MRI showed CAR T cell accumulation in CD19-positive tumors but not in CD19-negative tumors from days 6 to 13. Notably, 68Ga-DOTATOC accumulation in CD19-positive tumors was highest on day 9 (mean percentage injected dose [%ID], 3.7% ± 1.0 [SD]) and decreased on day 13 (mean %ID, 2.6% ± 0.7) in parallel with a decrease in tumor volume (day 9: mean, 195 mm3 ± 27; day 13: mean, 127 mm3 ± 43) in the group with tumor growth inhibition. Enhanced immunohistochemistry staining of cluster of differentiation 3 (CD3) and hSSTr2 was also observed in excised CD19-positive tumor tissues. Conclusion Direct and indirect cell imaging with PET/MRI enabled in vivo tracking and monitoring of CAR T cells in an animal model. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Bulte in this issue.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Xenoenxertos , Radioisótopos de Gálio , Receptores de Somatostatina , Leucócitos Mononucleares , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Modelos Animais de Doenças , Linfócitos T
4.
Artigo em Inglês | MEDLINE | ID: mdl-39151942

RESUMO

Phage-displayed antibody libraries can be constructed using any species that is easily immunized. The pComb3XSS phagemid vector is commonly used for library cloning and phage display. This phagemid encodes the origin of replication of the filamentous bacteriophage f1 but lacks all the genes required for replication and assembly of phage particles. The replication and the assembly of phage from these phagemids thus requires a "helper" phage that provides the genes essential for those steps during library production and bio-panning. One of those helper phages is VCSM13. In this protocol, we describe the preparation of VCSM13 helper phage. Users should prepare VCSM13 helper phage for library reamplification and for bio-panning.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39151941

RESUMO

Chicken antibodies have been widely used for research and diagnostic purposes. Chicken antibodies are often cross-reactive to epitopes shared by humans, nonhuman primates, and other mammals, and can be tested in many mouse disease models, which provides an advantage for their preclinical study and evaluation. In addition, the variable region of chicken antibodies has unique structural characteristics, including noncanonical cysteine residues in the heavy chain complementarity-determining region (CDR)3 and a long heavy chain CDR3, which together with a short light chain CDR enable the formation of unconventional antibody paratopes. As chickens have single functional copies of the V H and J H genes, and the somatic gene conversion process usually involves D H genes, all functional VDJ gene fragments can be obtained from the B-cell repertoire using a single PCR primer set, without any primer bias. As for the light chain, chickens only have a V λ light chain, composed of a single V λ and J λ gene pair. Therefore, the chicken light chain repertoire can also be accurately amplified using a single primer set. This unbiased reconstitution of the chicken B-cell repertoire provides a great advantage not only in the construction of phage display libraries but also for the in silico selection of antigen binders from a virtual B-cell receptor repertoire. Here, we introduce the use of chicken antibodies in research, diagnostic, and therapeutic fields. In addition, the chromosomal organization of chicken immunoglobulin genes and its diversification mechanisms for shaping the antibody repertoire are also discussed.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39151937

RESUMO

Effective isolation of specific antibodies from immunological repertoires requires the generation of a diverse library against a specific antigen of interest, as well as efficient selection procedures, such as bio-panning and phage ELISA. Key to this is the generation of a good immune response in the host, followed by preparation of high-quality RNA and cDNA from which a library can be constructed by the amplification and cloning of immunoglobulin heavy and light chain genes. The first step in the construction of such an "immune library" is a successful course of immunization. Detection of a strong serum antibody titer will theoretically then result in a pool of extracted RNA that is enriched for transcripts of genes encoding the antibody of interest. Chicken antibodies have been widely used for research and diagnostic purposes, largely because of both their cross-reactivity to epitopes shared by humans, mice, primates, and other mammals, and their simple characteristics, with chickens featuring single functional copies of V H /J H and V λ /J λ gene pairs. In chickens, antibodies against an antigen of interest can be detected in the serum as soon as 5-7 d after immunization. Once the antibody titer reaches an appropriate level in the serum, the spleen, bursa of Fabricius, and bone marrow are then harvested, and antibody libraries can be prepared from extracted RNA. Here, we describe a protocol for chicken immunization with an antigen of interest, followed by RNA extraction from the relevant tissues and cDNA synthesis, which users can use for antibody library construction.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39151940

RESUMO

Phage-displayed antibody fragment libraries can be constructed using essentially any species that is easily immunized, as long as the immunoglobulin variable region gene sequences are known. This protocol describes the procedures for the generation of a phage-displayed chicken single-chain variable fragment (scFv) library after immunization with a target antigen. Briefly, the rearranged heavy chain variable region (V H ) genes and the λ light chain variable region (V λ ) genes are amplified separately and are linked through two separate PCR steps to give the final scFv genes. The genes are then cloned into pComb3XSS to generate the phage display chicken scFv library, which can then be used for test and final library ligations.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39151938

RESUMO

Antibody production against an antigen of interest is highly efficient in chickens, and the use of chicken antibody libraries in phage display can result in high-affinity single-chain variable fragments (scFvs) for multiple applications. After library preparation from an animal immunized with the antigen of interest, the next step involves the identification of antigen binders. Here, we describe a process for the screening of a phage display chicken library using a technique called bio-panning. It consists of several rounds of binding scFv-displaying phage to antigens, followed by washing, elution, and reamplification. We also describe the steps for assessing clone pools obtained after bio-panning via an ELISA-based procedure known as "phage ELISA" to identify single clones. Last, we provide the steps for using high-throughput sequencing to analyze the pool of selected clones.

9.
Front Immunol ; 15: 1342285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576618

RESUMO

B cell receptors (BCRs) denote antigen specificity, while corresponding cell subsets indicate B cell functionality. Since each B cell uniquely encodes this combination, physical isolation and subsequent processing of individual B cells become indispensable to identify both attributes. However, this approach accompanies high costs and inevitable information loss, hindering high-throughput investigation of B cell populations. Here, we present BCR-SORT, a deep learning model that predicts cell subsets from their corresponding BCR sequences by leveraging B cell activation and maturation signatures encoded within BCR sequences. Subsequently, BCR-SORT is demonstrated to improve reconstruction of BCR phylogenetic trees, and reproduce results consistent with those verified using physical isolation-based methods or prior knowledge. Notably, when applied to BCR sequences from COVID-19 vaccine recipients, it revealed inter-individual heterogeneity of evolutionary trajectories towards Omicron-binding memory B cells. Overall, BCR-SORT offers great potential to improve our understanding of B cell responses.


Assuntos
Subpopulações de Linfócitos B , Aprendizado Profundo , Humanos , Filogenia , Vacinas contra COVID-19 , Receptores de Antígenos de Linfócitos B/genética
10.
Nat Commun ; 15(1): 3368, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643233

RESUMO

The immune escape of Omicron variants significantly subsides by the third dose of an mRNA vaccine. However, it is unclear how Omicron variant-neutralizing antibodies develop under repeated vaccination. We analyze blood samples from 41 BNT162b2 vaccinees following the course of three injections and analyze their B-cell receptor (BCR) repertoires at six time points in total. The concomitant reactivity to both ancestral and Omicron receptor-binding domain (RBD) is achieved by a limited number of BCR clonotypes depending on the accumulation of somatic hypermutation (SHM) after the third dose. Our findings suggest that SHM accumulation in the BCR space to broaden its specificity for unseen antigens is a counterprotective mechanism against virus variant immune escape.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
11.
Heliyon ; 10(4): e26663, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420468

RESUMO

Myasthenia Gravis (MG) patients with anti-acetylcholine receptor (AChR) antibodies frequently show hyperplastic thymi with ectopic germinal centers, where autoreactive B cells proliferate with the aid of T cells. In this study, thymus and peripheral blood (PB) samples were collected from ten AChR antibody-positive MG patients. T cell receptor (TCR) repertoires were analyzed using next-generation sequencing (NGS), and compared with that of an age and sex matched control group generated from a public database. Certain V genes and VJ gene recombination pairs were significantly upregulated in the TCR chains of αß-T cells in the PB of MG patients compared to the control group. Furthermore, the TCR chains found in the thymi of MG patients had a weighted distribution to longer CDR3 lengths when compared to the PB of MG patients, and the TCR beta chains (TRB) in the MG group's PB showed increased clonality encoded by one upregulated V gene. When TRB sequences were sub-divided into groups based on their CDR3 lengths, certain groups showed decreased clonality in the MG group's PB compared to the control group's PB. Finally, we demonstrated that stereotypic MG patient-specific TCR clonotypes co-exist in both the PB and thymi at a much higher frequency than that of the clonotypes confined to the PB. These results strongly suggest the existence of a biased T cell-mediated immune response in MG patients, as observed in other autoimmune diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA