Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 18790-18799, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859028

RESUMO

An aberration correction method is introduced for 3D phase deconvolution microscopy. Our technique capitalizes on multiple illumination patterns to iteratively extract Fourier space aberrations, utilizing the overlapping information inherent in these patterns. By refining the point spread function based on the retrieved aberration data, we significantly improve the precision of refractive index deconvolution. We validate the effectiveness of our method on both synthetic and biological three-dimensional samples, achieving notable enhancements in resolution and measurement accuracy. The method's reliability in aberration retrieval is further confirmed through controlled experiments with intentionally induced spherical aberrations, underscoring its potential for wide-ranging applications in microscopy and biomedicine.

2.
Sensors (Basel) ; 23(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36772321

RESUMO

Among the non-destructive testing (NDT) techniques, infrared thermography (IRT) is an attractive and highly reliable technology that can measure the thermal response of a wide area in real-time. In this study, thinning defects in S275 specimens were detected using lock-in thermography (LIT). After acquiring phase and amplitude images using four-point signal processing, the optimal excitation frequency was calculated. After segmentation was performed on each defect area, binarization was performed using the Otsu algorithm. For automated detection, the boundary tracking algorithm was used. The number of pixels was calculated and the detectability using RMSE was evaluated. Clarification of defective objects using image segmentation detectability evaluation technique using RMSE was presented.

3.
Sensors (Basel) ; 20(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113985

RESUMO

This study performed an experimental investigation on pulsed thermography to detect internal defects, the major degradation phenomena in several structures of the secondary systems in nuclear power plants as well as industrial pipelines. The material losses due to wall thinning were simulated by drilling flat-bottomed holes (FBH) on the steel plate. FBH of different sizes in varying depths were considered to evaluate the detection capability of the proposed technique. A short and high energy light pulse was deposited on a sample surface, and an infrared camera was used to analyze the effect of the applied heat flux. The three most established signal processing techniques of thermography, namely thermal signal reconstruction (TSR), pulsed phase thermography (PPT), and principal component thermography (PCT), have been applied to raw thermal images. Then, the performance of each technique was evaluated concerning enhanced defect detectability and signal to noise ratio (SNR). The results revealed that TSR enhanced the defect detectability, detecting the maximum number of defects, PPT provided the highest SNR, especially for the deeper defects, and PCT provided the highest SNR for the shallower defects.

4.
J Biophotonics ; 16(8): e202300067, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37170722

RESUMO

For patients with acute ischemic stroke, histological quantification of thrombus composition provides evidence for determining appropriate treatment. However, the traditional manual segmentation of stained thrombi is laborious and inconsistent. In this study, we propose a label-free method that combines optical diffraction tomography (ODT) and deep learning (DL) to automate the histological quantification process. The DL model classifies ODT image patches with 95% accuracy, and the collective prediction generates a whole-slide map of red blood cells and fibrin. The resulting whole-slide composition displays an average error of 1.1% and does not experience staining variability, facilitating faster analysis with reduced labor. The present approach will enable rapid and quantitative evaluation of blood clot composition, expediting the preclinical research and diagnosis of cardiovascular diseases.


Assuntos
Isquemia Encefálica , Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Isquemia Encefálica/patologia , Trombose/diagnóstico por imagem , Trombose/patologia , Tomografia
5.
Biomed Opt Express ; 14(12): 6127-6137, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420329

RESUMO

The isolation of white blood cells (WBCs) from whole blood constitutes a pivotal process for immunological studies, diagnosis of hematologic disorders, and the facilitation of immunotherapy. Despite the ubiquity of density gradient centrifugation in WBC isolation, its influence on WBC functionality remains inadequately understood. This research employs holotomography to explore the effects of two distinct WBC separation techniques, namely conventional centrifugation and microfluidic separation, on the functionality of the isolated cells. We utilize three-dimensional refractive index distribution and time-lapse dynamics to analyze individual WBCs in-depth, focusing on their morphology, motility, and phagocytic capabilities. Our observations highlight that centrifugal processes negatively impact WBC motility and phagocytic capacity, whereas microfluidic separation yields a more favorable outcome in preserving WBC functionality. These findings emphasize the potential of microfluidic separation techniques as a viable alternative to traditional centrifugation for WBC isolation, potentially enabling more precise analyses in immunology research and improving the accuracy of hematologic disorder diagnoses.

6.
Materials (Basel) ; 15(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35329783

RESUMO

The growing use of composite honeycomb structures in several industries including aircraft has demonstrated the need to develop effective and efficient non-destructive evaluation methods. In recent years, active thermography has attracted great interest as a reliable technology for non-destructive testing and evaluation of composite materials due to its advantages of non-contact, non-destructive, full-area coverage, high speed, qualitative, and quantitative testing. However, non-uniform heating, low spatial resolution, and ambient environmental noise make the detection and characterization of defects challenging. Therefore, in this study, lock-in thermography (LIT) was used to detect water ingress into an aircraft composite honeycomb sandwich structure, and the phase signals were binarized through the Otsu algorithm. A square composite honeycomb with dimensions of 210 mm × 210 mm along with 16 different defective areas of various sizes in groups filled with water by 25%, 50%, 75%, and 100% of the cell volume was considered. The sample was excited at multiple modulation frequencies (i.e., 1 Hz to 0.01 Hz). The results were compared in terms of phase contrast and CNR according to the modulation frequency. In addition, the detectability was analyzed by comparing the number of pixels of water ingress in the binarized image and the theoretical calculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA