Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 14(3): 1484-91, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24548146

RESUMO

Nanoparticle LiFePO4, the basis for an entire class of high power Li-ion batteries, has recently been shown to exist in binary lithiated/delithiated states at intermediate states of charge. The Mn-bearing version, LiMn(y)Fe(1-y)PO4, exhibits even higher rate capability as a lithium battery cathode than LiFePO4 of comparable particle size. To gain insight into the cause(s) of this desirable performance, the electrochemically driven phase transformation during battery charge and discharge of nanoscale LiMn0.4Fe0.6PO4 of three different average particle sizes, 52, 106, and 152 nm, is investigated by operando synchrotron radiation powder X-ray diffraction. In stark contrast to the binary lithiation states of pure LiFePO4 revealed in recent investigations, the formations of metastable solid solutions covering a remarkable wide compositional range, including while in two-phase coexistence, are observed. Detailed analysis correlates this behavior with small elastic misfits between phases compared to either pure LiFePO4 or LiMnPO4. On the basis of time- and state-of-charge dependence of the olivine structure parameters, we propose a coherent transformation mechanism. These findings illustrate a second, completely different phase transformation mode for pure well-ordered nanoscale olivines compared to the well-studied case of LiFePO4.

2.
Acta Crystallogr B ; 65(Pt 3): 382-92, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19461149

RESUMO

The drug benzocaine (ethyl 4-aminobenzoate), commonly used as a local anaesthetic, is a bimorphic solid at room temperature. Form (I) is monoclinic P2(1)/c, while the metastable form (II) is orthorhombic P2(1)2(1)2(1). Three-dimensional diffuse X-ray scattering data have been collected for the two forms on the 11-ID-B beamline at the Advanced Photon Source (APS). Both forms show strong and highly structured diffuse scattering. The data have been interpreted and analysed using Monte Carlo (MC) modelling on the basis that the scattering is purely thermal in origin and indicates the presence of highly correlated molecular motions. In both forms (I) and (II) broad diffuse streaks are observed in the 0kl section which indicate strong longitudinal displacement correlations between molecules in the 031 directions, extending over distances of up to 50 A. Streaks extending between Bragg peaks in the hk0 section normal to [100] correspond to correlated motions of chains of molecules extending along a that are linked by N-H...O=C hydrogen bonds and which occur together as coplanar ribbon pairs. The main difference between the two forms is in the dynamical behaviour of the ribbon pairs and in particular how they are able to slide relative to each other. While for form (I) a model involving harmonic springs is able to describe the motion satisfactorily, as simple excursions away from the average structure, there is evidence in form (II) of anharmonic effects that are precursors of a phase transition to a new low-temperature phase, form (III), that was subsequently found.


Assuntos
Benzocaína/química , Temperatura , Simulação por Computador , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Método de Monte Carlo , Transição de Fase
3.
Phys Rev Lett ; 96(2): 027201, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486622

RESUMO

Inelastic cold-neutron scattering on LaCoO3 provided evidence for a distinct low energy excitation at 0.6 meV coincident with the thermally induced magnetic transition. Coexisting strong ferromagnetic (FM) and weaker antiferromagnetic correlations that are dynamic follow the activation to the excited state, identified as the intermediate S = 1 spin triplet. This is indicative of dynamical orbital ordering favoring the observed magnetic interactions. With hole doping as in La(1-x)Sr(x)CoO3 , the FM correlations between Co spins become static and isotropically distributed due to the formation of FM droplets. The correlation length and condensation temperature of these droplets increase rapidly with metallicity due to the double exchange mechanism.

4.
J Am Chem Soc ; 123(8): 1694-702, 2001 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11456769

RESUMO

In situ X-ray diffraction (XRD) and NMR methods were used to follow the structural changes that occur during the dismutation reaction of hydrochlorofluorocarbon-22 (CHClF(2)) over gamma-alumina. Use of a flow cell allowed diffraction patterns to be recorded, while the reaction products were simultaneously monitored downstream of the catalyst bed, by gas chromatography. No visible structural changes of gamma-Al(2)O(3) were observed at 300 degrees C, the temperature at which this material becomes active for catalysis. A new phase began to form at 360 degrees C, which by 500 degrees C completely dominated the XRD powder pattern. (19)F/(27)Al cross-polarization (CP) experiments of gamma-Al(2)O(3) activated at 300 degrees C showed that AlF(3) had already begun to form at this temperature. By 400 degrees C, resonances from a phase that resembles alpha-AlF(3) dominate both the (19)F and (27)Al NMR spectra of the used catalyst. In situ XRD experiments of the catalytically inactive alpha-AlF(3) phase were performed to investigate the structural changes of this material, associated with the extent of tilting of the AlF(6) octahedra in this ReO(3)-related structure, as a function of temperature. Structural refinements of this sample, and the catalytically active phase that grows over gamma-Al(2)O(3), demonstrate that the catalyst is structurally similar to the rhombohedral form of alpha-AlF(3). Differences between the two phases are ascribed to defects in the catalyst, which limit the flexibility of the structure; these may also be responsible for the differences in the catalytic behavior of the two materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA