RESUMO
18F labeling strategies for unmodified peptides with [18F]fluoride require 18F-labeled prosthetics for bioconjugation more often with cysteine thiols or lysine amines. Here we explore selective radical chemistry to target aromatic residues applying C-H 18F-trifluoromethylation. We report a one-step route to [18F]CF3SO2NH4 from [18F]fluoride and its application to direct [18F]CF3 incorporation at tryptophan or tyrosine residues using unmodified peptides as complex as recombinant human insulin. The fully automated radiosynthesis of octreotide[Trp(2-CF218F)] enables in vivo positron emission tomography imaging.
Assuntos
Clorofluorcarbonetos de Metano/química , Radioisótopos de Flúor/química , Peptídeos/química , Compostos de Enxofre/química , Metilação , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/químicaRESUMO
Development of resistance causes failure of drugs targeting receptor tyrosine kinase (RTK) networks and represents a critical challenge for precision medicine. Here, we show that PHLDA1 downregulation is critical to acquisition and maintenance of drug resistance in RTK-driven cancer. Using fibroblast growth factor receptor (FGFR) inhibition in endometrial cancer cells, we identify an Akt-driven compensatory mechanism underpinned by downregulation of PHLDA1. We demonstrate broad clinical relevance of our findings, showing that PHLDA1 downregulation also occurs in response to RTK-targeted therapy in breast and renal cancer patients, as well as following trastuzumab treatment in HER2+ breast cancer cells. Crucially, knockdown of PHLDA1 alone was sufficient to confer de novo resistance to RTK inhibitors and induction of PHLDA1 expression re-sensitized drug-resistant cancer cells to targeted therapies, identifying PHLDA1 as a biomarker for drug response and highlighting the potential of PHLDA1 reactivation as a means of circumventing drug resistance.