Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Hum Mol Genet ; 29(8): 1319-1329, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32202296

RESUMO

Interpretation of variants of uncertain significance is an actual major challenge. We addressed this question on a set of OPA1 missense variants responsible for variable severity of neurological impairments. We used targeted metabolomics to explore the different signatures of OPA1 variants expressed in Opa1 deleted mouse embryonic fibroblasts (Opa1-/- MEFs), grown under selective conditions. Multivariate analyses of data discriminated Opa1+/+ from Opa1-/- MEFs metabolic signatures and classified OPA1 variants according to their in vitro severity. Indeed, the mild p.I382M hypomorphic variant was segregating close to the wild-type allele, while the most severe p.R445H variant was close to Opa1-/- MEFs, and the p.D603H and p.G439V alleles, responsible for isolated and syndromic presentations, respectively, were intermediary between the p.I382M and the p.R445H variants. The most discriminant metabolic features were hydroxyproline, the spermine/spermidine ratio, amino acid pool and several phospholipids, emphasizing proteostasis, endoplasmic reticulum (ER) stress and phospholipid remodeling as the main mechanisms ranking OPA1 allele impacts on metabolism. These results demonstrate the high resolving power of metabolomics in hierarchizing OPA1 missense mutations by their in vitro severity, fitting clinical expressivity. This suggests that our methodological approach can be used to discriminate the pathological significance of variants in genes responsible for other rare metabolic diseases and may be instrumental to select possible compounds eligible for supplementation treatment.


Assuntos
Estresse do Retículo Endoplasmático/genética , GTP Fosfo-Hidrolases/genética , Metabolômica , Alelos , Animais , Fibroblastos/metabolismo , Humanos , Camundongos , Mutação de Sentido Incorreto/genética , Fenótipo , Proteostase/genética
2.
J Proteome Res ; 20(5): 2772-2779, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851846

RESUMO

The importance of sexual dimorphism of the mouse brain metabolome was recently highlighted, in addition to a high regional specificity found between the frontal cortex, the cerebellum, and the brain stem. To address the origin of this dimorphism, we performed gonadectomy on both sexes, followed by a metabolomic study targeting 188 metabolites in the three brain regions. While sham controls, which underwent the same surgical procedure without gonadectomy, reproduced the regional sexual dimorphism of the metabolome previously identified, no sex difference was identifiable after gonadectomy, through both univariate and multivariate analyses. These experiments also made it possible to identify which sex was responsible for the dimorphism for 35 metabolites. The female sex contributed to the difference for more than 80% of them. Our results show that gonads are the main contributors to the brain sexual dimorphism previously observed, especially in females.


Assuntos
Metabolômica , Caracteres Sexuais , Animais , Encéfalo , Castração , Feminino , Masculino , Metaboloma , Camundongos
3.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344771

RESUMO

Leber's hereditary optic neuropathy (LHON, MIM#535000) is the most common form of inherited optic neuropathies and mitochondrial DNA-related diseases. The pathogenicity of mutations in genes encoding components of mitochondrial Complex I is well established, but the underlying pathomechanisms of the disease are still unclear. Hypothesizing that oxidative stress related to Complex I deficiency may increase protein S-glutathionylation, we investigated the proteome-wide S-glutathionylation profiles in LHON (n = 11) and control (n = 7) fibroblasts, using the GluICAT platform that we recently developed. Glutathionylation was also studied in healthy fibroblasts (n = 6) after experimental Complex I inhibition. The significantly increased reactive oxygen species (ROS) production in the LHON group by Complex I was shown experimentally. Among the 540 proteins which were globally identified as glutathionylated, 79 showed a significantly increased glutathionylation (p < 0.05) in LHON and 94 in Complex I-inhibited fibroblasts. Approximately 42% (33/79) of the altered proteins were shared by the two groups, suggesting that Complex I deficiency was the main cause of increased glutathionylation. Among the 79 affected proteins in LHON fibroblasts, 23% (18/79) were involved in energetic metabolism, 31% (24/79) exhibited catalytic activity, 73% (58/79) showed various non-mitochondrial localizations, and 38% (30/79) affected the cell protein quality control. Integrated proteo-metabolomic analysis using our previous metabolomic study of LHON fibroblasts also revealed similar alterations of protein metabolism and, in particular, of aminoacyl-tRNA synthetases. S-glutathionylation is mainly known to be responsible for protein loss of function, and molecular dynamics simulations and 3D structure predictions confirmed such deleterious impacts on adenine nucleotide translocator 2 (ANT2), by weakening its affinity to ATP/ADP. Our study reveals a broad impact throughout the cell of Complex I-related LHON pathogenesis, involving a generalized protein stress response, and provides a therapeutic rationale for targeting S-glutathionylation by antioxidative strategies.


Assuntos
Atrofia Óptica Hereditária de Leber/metabolismo , Proteína S/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Suscetibilidade a Doenças , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Modelos Moleculares , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/etiologia , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteína S/química , Proteoma , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Adulto Jovem
4.
J Proteome Res ; 18(7): 2779-2790, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31199663

RESUMO

OPA1 is a dynamin GTPase implicated in mitochondrial membrane fusion. Despite its involvement in lipid remodeling, the function of OPA1 has never been analyzed by whole-cell lipidomics. We used a nontargeted, reversed-phase lipidomics approach, validated for cell cultures, to investigate OPA1-inactivated mouse embryonic fibroblasts ( Opa1 -/- MEFs). This led to the identification of a wide range of 14 different lipid subclasses comprising 212 accurately detected lipids. Multivariate and univariate statistical analyses were then carried out to assess the differences between the Opa1 -/- and Opa1 +/+ genotypes. Of the 212 lipids identified, 69 were found to discriminate between Opa1 -/- MEFs and Opa1 +/+ MEFs. Among these lipids, 34 were triglycerides, all of which were at higher levels in Opa1 -/- MEFs with fold changes ranging from 3.60 to 17.93. Cell imaging with labeled fatty acids revealed a sharp alteration of the fatty acid flux with a reduced mitochondrial uptake. The other 35 discriminating lipids included phosphatidylcholines, lysophosphatidylcholines, phosphatidylethanolamine, and sphingomyelins, mainly involved in membrane remodeling, and ceramides, gangliosides, and phosphatidylinositols, mainly involved in apoptotic cell signaling. Our results show that the inactivation of OPA1 severely affects the mitochondrial uptake of fatty acids and lipids through membrane remodeling and apoptotic cell signaling.


Assuntos
Ácidos Graxos/metabolismo , Fibroblastos/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Lipidômica/métodos , Triglicerídeos/metabolismo , Animais , Apoptose , Membrana Celular/metabolismo , Células Cultivadas , GTP Fosfo-Hidrolases/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo
5.
J Cell Sci ; 130(11): 1940-1951, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424233

RESUMO

Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status.


Assuntos
Ciclo do Ácido Cítrico/genética , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas de Ligação a RNA/metabolismo , Trifosfato de Adenosina/biossíntese , Sistemas CRISPR-Cas , Ciclo do Ácido Cítrico/efeitos dos fármacos , Dano ao DNA , DNA Mitocondrial/metabolismo , Etídio/toxicidade , Deleção de Genes , Células HeLa , Humanos , Metabolômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Imagem Óptica , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Palmitoilcarnitina/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Ligação a RNA/genética
6.
J Proteome Res ; 17(1): 745-750, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29111762

RESUMO

Mitochondria and endoplasmic reticulum (ER) are physically and functionally connected. This close interaction, via mitochondria-associated membranes, is increasingly explored and supports the importance of studying these two organelles as a whole. Metabolomics and lipidomics are powerful approaches for the exploration of metabolic pathways that may be useful to provide deeper information on these organelles' functions, dysfunctions, and interactions. We developed a quick and simple experimental procedure for the purification of a mitochondria-ER fraction from human fibroblasts. We applied combined metabolomics and lipidomics analyses by mass spectrometry with excellent reproducibility. Seventy-two metabolites and 418 complex lipids were detected with a mean coefficient of variation around 12%, among which many were specific to the mitochondrial metabolism. Thus this strategy based on robust mitochondria-ER extraction and "omics" combination will be useful for investigating the pathophysiology of complex diseases.


Assuntos
Retículo Endoplasmático/metabolismo , Fibroblastos/ultraestrutura , Lipídeos/análise , Metabolômica/métodos , Membranas Mitocondriais/metabolismo , Estudos Clínicos como Assunto , Humanos , Espectrometria de Massas , Reprodutibilidade dos Testes , Frações Subcelulares/ultraestrutura
7.
Brain ; 139(11): 2864-2876, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633772

RESUMO

Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q 2cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as the greater expression of C/EBP homologous protein and the increased XBP1 splicing, in fibroblasts from affected patients, all these changes being reversed by the endoplasmic reticulum stress inhibitor, TUDCA (tauroursodeoxycholic acid). Thus, our metabolomic analysis reveals a pharmacologically-reversible endoplasmic reticulum stress in complex I-related Leber's hereditary optic neuropathy fibroblasts, a finding that may open up new therapeutic perspectives for the treatment of Leber's hereditary optic neuropathy with endoplasmic reticulum-targeting drugs.


Assuntos
DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Mutação/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Adulto , Idoso , Células Cultivadas , Estudos de Coortes , Complexo I de Transporte de Elétrons/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Inseticidas/farmacologia , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , Piridinas/farmacologia , Rotenona/farmacologia , Adulto Jovem
8.
J Biol Chem ; 288(51): 36662-75, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24178296

RESUMO

Resveratrol (RSV) has been shown to be involved in the regulation of energetic metabolism, generating increasing interest in therapeutic use. SIRT1 has been described as the main target of RSV. However, recent reports have challenged the hypothesis of its direct activation by RSV, and the signaling pathways remain elusive. Here, the effects of RSV on mitochondrial metabolism are detailed both in vivo and in vitro using murine and cellular models and isolated enzymes. We demonstrate that low RSV doses (1-5 µM) directly stimulate NADH dehydrogenases and, more specifically, mitochondrial complex I activity (EC50 ∼1 µM). In HepG2 cells, this complex I activation increases the mitochondrial NAD(+)/NADH ratio. This higher NAD(+) level initiates a SIRT3-dependent increase in the mitochondrial substrate supply pathways (i.e. the tricarboxylic acid cycle and fatty acid oxidation). This effect is also seen in liver mitochondria of RSV-fed animals (50 mg/kg/day). We conclude that the increase in NADH oxidation by complex I is a crucial event for SIRT3 activation by RSV. Our results open up new perspectives in the understanding of the RSV signaling pathway and highlight the critical importance of RSV doses used for future clinical trials.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Hepatócitos/efeitos dos fármacos , NAD/metabolismo , Sirtuína 3/metabolismo , Estilbenos/farmacologia , Animais , Ativação Enzimática , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Resveratrol
9.
Brain Commun ; 3(2): fcab063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34056600

RESUMO

Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.

10.
Prog Neurobiol ; 184: 101698, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557505

RESUMO

The development of personalized medicine according to gender calls for the integration of sexual dimorphism in pre-clinical models of diseases. Although sexual dimorphism in the brain of the mouse has been the subject of several behavioral, neuroimaging and experimental studies, very few have characterized the bases of sexual dimorphism in the brain on the omics scale. In particular, physiological variations in metabolomic and lipidomic terms related to gender have not been mapped in the brain. We carried out a metabolomic analysis, targeting 188 metabolites representative of various cellular structures and metabolisms, in three brain regions: frontal cortex, brain stem and cerebellum, in 3-month-old C57BL-6 J male (n = 20) vs. female (n = 20) mice. Our results demonstrate the existence of sexual dimorphism in the whole brain as well as in separate brain regions. Half of the 129 accurately measured metabolites were involved in the sexual dimorphism of the murine brain, but only 8% of those (hydroxyproline, creatinine, hexoses, tryptophan, threonine and lysoPC.a.C18.2) were involved in common in the three cerebral regions, while 71%, including phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, acylcarnitines, amino acids, biogenic amines, and polyamines, were specific to only one region of the brain, underscoring the highly regional specificity of cerebral sexual dimorphism in mice.


Assuntos
Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Lobo Frontal/metabolismo , Metabolômica , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Andrology ; 8(6): 1859-1866, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32770844

RESUMO

BACKGROUND: Male factor is incriminated in approximately 50% of cases of infertility. The metabolomic approach has recently been used in the assessment of sperm quality and male fertility. MATERIALS AND METHODS: We analyzed the metabolomic signatures of the seminal plasma in 20 men with severe oligoasthenospermia (prewash total motile sperm count < 5.106 ) (SOA) and compared it to 20 men with normal semen parameters, with a standardized approach of targeted and quantitative metabolomics using high-performance liquid chromatography, coupled with tandem mass spectrometry, and the Biocrates Absolute IDQ p180 kit. RESULTS: Among the 188 metabolites analyzed, 110 were accurately measured in the seminal plasma. A robust model discriminating the two populations (Q2(cum) = 55.2%) was obtained by OPLS-DA (orthogonal partial least-squares discriminant analysis), based on the drop in concentrations of 37 metabolites with a VIP (variable important for projection) greater than 1. Overall, in men with SOA, there was a significant decrease in: 17 phosphatidylcholines and four sphingomyelins; acylcarnitines, with free L-carnitine being the most discriminating metabolite; polyunsaturated fatty acids; six amino acids (glutamate, aspartate, methionine, tryptophan, proline, and alanine); and four biogenic amines (spermine, spermidine, serotonin, and alpha-aminoadipate). DISCUSSION: Our signature includes several metabolic changes with different impacts on the sperm quality: a change in phospholipid composition and the saturation of their fatty acids that is potentially linked to the deterioration of sperm membranes; a carnitine deficiency that can negatively impact the energy production via fatty acid oxidation and oxidative phosphorylation; and a decreased level of amino acids and biogenic amines that can lead to dysregulated metabolic and signaling pathways. CONCLUSION: We provide a global overview of the metabolic defects contributing to the structural and functional alteration of spermatozoa in severe oligoasthenospermia. These findings offer new insights into the pathophysiology of male factor infertility that could help to develop future specific treatments.


Assuntos
Metaboloma/fisiologia , Oligospermia/metabolismo , Análise do Sêmen , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/patologia , Adulto , Aminas/análise , Aminoácidos/análise , Carnitina/análogos & derivados , Carnitina/análise , Ácidos Graxos Insaturados/análise , Humanos , Masculino , Metabolômica/métodos , Fosfatidilcolinas/análise , Estudos Prospectivos , Sêmen/citologia , Esfingomielinas/análise
12.
Cells ; 9(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466566

RESUMO

Few data-driven metabolomic approaches have been reported in sickle cell disease (SCD) to date. We performed a metabo-lipidomic study on the plasma and red blood cells of a steady-state mouse model carrying the homozygous human hemoglobin SS, compared with AS and AA genotypes. Among the 188 metabolites analyzed by a targeted quantitative metabolomic approach, 153 and 129 metabolites were accurately measured in the plasma and red blood cells, respectively. Unsupervised PCAs (principal component analyses) gave good spontaneous discrimination between HbSS and controls, and supervised OPLS-DAs (orthogonal partial least squares-discriminant analyses) provided highly discriminant models. These models confirmed the well-known deregulation of nitric oxide synthesis in the HbSS genotype, involving arginine deficiency and increased levels of dimethylarginines, ornithine, and polyamines. Other discriminant metabolites were newly evidenced, such as hexoses, alpha-aminoadipate, serotonin, kynurenine, and amino acids, pointing to a glycolytic shift and to the alteration of metabolites known to be involved in nociceptive pathways. Sharp remodeling of lysophosphatidylcholines, phosphatidylcholines, and sphingomyelins was evidenced in red blood cells. Our metabolomic study provides an overview of the metabolic remodeling induced by the sickle genotype in the plasma and red blood cells, revealing a biological fingerprint of altered nitric oxide, bioenergetics and nociceptive pathways.


Assuntos
Anemia Falciforme/sangue , Anemia Falciforme/metabolismo , Eritrócitos/metabolismo , Metabolômica , Nociceptividade , Animais , Análise Discriminante , Hemoglobina Falciforme , Heterozigoto , Análise dos Mínimos Quadrados , Camundongos , Análise de Componente Principal
13.
J Clin Med ; 9(4)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290473

RESUMO

The metabolomic profile of vaso-occlusive crisis, compared to the basal state of sickle cell disease, has never been reported to our knowledge. Using a standardized targeted metabolomic approach, performed on plasma and erythrocyte fractions, we compared these two states of the disease in the same group of 40 patients. Among the 188 metabolites analyzed, 153 were accurately measured in plasma and 143 in red blood cells. Supervised paired partial least squares discriminant analysis (pPLS-DA) showed good predictive performance for test sets with median area under the receiver operating characteristic (AUROC) curves of 99% and mean p-values of 0.0005 and 0.0002 in plasma and erythrocytes, respectively. A total of 63 metabolites allowed discrimination between the two groups in the plasma, whereas 61 allowed discrimination in the erythrocytes. Overall, this signature points to altered arginine and nitric oxide metabolism, pain pathophysiology, hypoxia and energetic crisis, and membrane remodeling of red blood cells. It also revealed the alteration of metabolite concentrations that had not been previously associated with sickle cell disease. Our results demonstrate that the vaso-occlusive crisis has a specific metabolomic signature, distinct from that observed at steady state, which may be potentially helpful for finding predictive biomarkers for this acute life-threatening episode.

14.
J Clin Med ; 9(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120889

RESUMO

To determine the plasma metabolomic profile of exudative age-related macular degeneration (AMD), we performed a targeted metabolomics study on the plasma from patients (n = 40, mean age = 81.1) compared to an age- and sex-matched control group (n = 40, mean age = 81.8). All included patients had documented exudative AMD, causing significant visual loss (mean logMAR visual acuity = 0.63), compared to the control group. Patients and controls did not differ in terms of body mass index and co-morbidities. Among the 188 metabolites analyzed, 150 (79.8%) were accurately measured. The concentrations of 18 metabolites were significantly modified in the AMD group, but only six of them remained significantly different after Benjamini-Hochberg correction. Valine, lysine, carnitine, valerylcarnitine and proline were increased, while carnosine, a dipeptide disclosing anti-oxidant and anti-glycating properties, was, on average, reduced by 50% in AMD compared to controls. Moreover, carnosine was undetectable for 49% of AMD patients compared to 18% in the control group (p-value = 0.0035). Carnitine is involved in the transfer of fatty acids within the mitochondria; proline, lysine and valerylcarnitine are substrates for mitochondrial electrons transferring flavoproteins, and proline is one of the main metabolites supplying energy to the retina. Overall, our results reveal six new metabolites involved in the plasma metabolomic profile of exudative AMD, suggesting mitochondrial energetic impairments and carnosine deficiency.

15.
Mol Neurobiol ; 56(8): 5780-5791, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30680691

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by a wide metabolic remodeling, as shown by recent metabolomics and lipidomics studies performed in samples from patient cohorts and experimental animal models. Here, we explored the metabolome and lipidome of fibroblasts from sporadic ALS patients (n = 13) comparatively to age- and sex-matched controls (n = 11), and the subcellular fraction containing the mitochondria and endoplasmic reticulum (mito-ER), given that mitochondrial dysfunctions and ER stress are important features of ALS patho-mechanisms. We also assessed the mitochondrial oxidative respiration and the mitochondrial genomic (mtDNA) sequence, although without yielding significant differences. Compared to controls, ALS fibroblasts did not exhibit a mitochondrial respiration defect nor an increased proportion of mitochondrial DNA mutations. In addition, non-targeted metabolomics and lipidomics analyses identified 124 and 127 metabolites, and 328 and 220 lipids in whole cells and the mito-ER fractions, respectively, along with partial least-squares-discriminant analysis (PLS-DA) models being systematically highly predictive of the disease. The most discriminant metabolomic features were the alteration of purine, pyrimidine, and energetic metabolisms, suggestive of oxidative stress and of pro-inflammatory status. The most important lipidomic feature in the mito-ER fraction was the disturbance of phosphatidylcholine PC (36:4p) levels, which we had previously reported in the cerebrospinal fluid of ALS patients and in the brain from an ALS mouse model. Thus, our results reveal that fibroblasts from sporadic ALS patients share common metabolic remodeling, consistent with other metabolic studies performed in ALS, opening perspectives for further exploration in this cellular model in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Metabolômica , Mitocôndrias/metabolismo , Fosfolipídeos , Purinas/metabolismo , Pirimidinas/metabolismo , DNA Mitocondrial/genética , Metabolismo Energético , Feminino , Humanos , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Fosforilação Oxidativa , Fosfolipídeos/metabolismo
16.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2475-2489, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31121247

RESUMO

Due to its pivotal role in NADH oxidation and ATP synthesis, mitochondrial complex I (CI) emerged as a crucial regulator of cellular metabolism. A functional CI relies on the sequential assembly of nuclear- and mtDNA-encoded subunits; however, whether CI assembly status is involved in the metabolic adaptations in CI deficiency still remains largely unknown. Here, we investigated the relationship between CI functions, its structure and the cellular metabolism in 29 patient fibroblasts representative of most CI mitochondrial diseases. Our results show that, contrary to the generally accepted view, a complex I deficiency does not necessarily lead to a glycolytic switch, i.e. the so-called Warburg effect, but that this particular metabolic adaptation is a feature of CI assembly defect. By contrast, a CI functional defect without disassembly induces a higher catabolism to sustain the oxidative metabolism. Mechanistically, we demonstrate that reactive oxygen species overproduction by CI assembly intermediates and subsequent AMPK-dependent Pyruvate Dehydrogenase inactivation are key players of this metabolic reprogramming. Thus, this study provides a two-way-model of metabolic responses to CI deficiencies that are central not only in defining therapeutic strategies for mitochondrial diseases, but also in all pathophysiological conditions involving a CI deficiency.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Ciclo do Ácido Cítrico , Fibroblastos/citologia , Fibroblastos/metabolismo , Glicólise , Humanos , Engenharia Metabólica , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , NADH Desidrogenase/antagonistas & inibidores , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Análise de Componente Principal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Sci Rep ; 8(1): 11528, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068998

RESUMO

OPA1 (Optic Atrophy 1) is a multi-isoform dynamin GTPase involved in the regulation of mitochondrial fusion and organization of the cristae structure of the mitochondrial inner membrane. Pathogenic OPA1 variants lead to a large spectrum of disorders associated with visual impairment due to optic nerve neuropathy. The aim of this study was to investigate the metabolomic consequences of complete OPA1 disruption in Opa1-/- mouse embryonic fibroblasts (MEFs) compared to their Opa1+/+ counterparts. Our non-targeted metabolomics approach revealed significant modifications of the concentration of several mitochondrial substrates, i.e. a decrease of aspartate, glutamate and α-ketoglutaric acid, and an increase of asparagine, glutamine and adenosine-5'-monophosphate, all related to aspartate metabolism. The signature further highlighted the altered metabolism of nucleotides and NAD together with deficient mitochondrial bioenergetics, reflected by the decrease of creatine/creatine phosphate and pantothenic acid, and the increase in pyruvate and glutathione. Interestingly, we recently reported significant variations of five of these molecules, including aspartate and glutamate, in the plasma of individuals carrying pathogenic OPA1 variants. Our findings show that the disruption of OPA1 leads to a remodelling of bioenergetic pathways with the central role being played by aspartate and related metabolites.


Assuntos
Metabolismo Energético , Fibroblastos/química , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/deficiência , Metaboloma , Animais , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo
18.
Invest Ophthalmol Vis Sci ; 58(2): 812-820, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159969

RESUMO

Purpose: Dominant optic atrophy (MIM No. 165500) is a blinding condition related to mutations in OPA1, a gene encoding a large GTPase involved in mitochondrial inner membrane dynamics. Although several mouse models mimicking the disease have been developed, the pathophysiological mechanisms responsible for retinal ganglion cell degeneration remain poorly understood. Methods: Using a targeted metabolomic approach, we measured the concentrations of 188 metabolites in nine tissues, that is, brain, three types of skeletal muscle, heart, liver, retina, optic nerve, and plasma in symptomatic 11-month-old Opa1delTTAG/+ mice. Results: Significant metabolic signatures were found only in the optic nerve and plasma of female mice. The optic nerve signature was characterized by altered concentrations of phospholipids, amino acids, acylcarnitines, and carnosine, whereas the plasma signature showed decreased concentrations of amino acids and sarcosine associated with increased concentrations of several phospholipids. In contrast, the investigation of 3-month-old presymptomatic Opa1delTTAG/+ mice showed no specific plasma signature but revealed a significant optic nerve signature in both sexes, although with a sex effect. The Opa1delTTAG/+ versus wild-type optic nerve signature was characterized by the decreased concentrations of 10 sphingomyelins and 10 lysophosphatidylcholines, suggestive of myelin sheath alteration, and by alteration in the concentrations of metabolites involved in neuroprotection, such as dimethylarginine, carnitine, spermine, spermidine, carnosine, and glutamate, suggesting a concomitant axonal metabolic dysfunction. Conclusions: Our comprehensive metabolomic investigations revealed in symptomatic as well as in presymptomatic Opa1delTTAG/+ mice, a specific sensitiveness of the optic nerve to Opa1 insufficiency, opening new routes for protective therapeutic strategies.


Assuntos
GTP Fosfo-Hidrolases/genética , Metaboloma/fisiologia , Atrofia Óptica Autossômica Dominante/metabolismo , Nervo Óptico/metabolismo , Animais , Encéfalo/metabolismo , GTP Fosfo-Hidrolases/deficiência , GTP Fosfo-Hidrolases/metabolismo , Fígado/metabolismo , Metabolômica/métodos , Camundongos Transgênicos , Microscopia Eletrônica , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Atrofia Óptica Autossômica Dominante/genética , Nervo Óptico/ultraestrutura , Retina/metabolismo
19.
PLoS One ; 10(12): e0144290, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26684010

RESUMO

Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5µM), resveratrol stimulated complex I activity, whereas at high dose (50 µM) it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed.


Assuntos
Encéfalo/efeitos dos fármacos , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/efeitos dos fármacos , Estilbenos/farmacologia , Fatores Etários , Animais , Sítios de Ligação , Encéfalo/metabolismo , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mitocôndrias/enzimologia , Modelos Moleculares , Simulação de Acoplamento Molecular , NAD/metabolismo , Estresse Oxidativo , Resveratrol
20.
Int J Biochem Cell Biol ; 65: 91-103, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26024641

RESUMO

Complex I (CI) deficiency is the most common respiratory chain defect representing more than 30% of mitochondrial diseases. CI is an L-shaped multi-subunit complex with a peripheral arm protruding into the mitochondrial matrix and a membrane arm. CI sequentially assembled into main assembly intermediates: the P (pumping), Q (Quinone) and N (NADH dehydrogenase) modules. In this study, we analyzed 11 fibroblast cell lines derived from patients with inherited CI deficiency resulting from mutations in the nuclear or mitochondrial DNA and impacting these different modules. In patient cells carrying a mutation located in the matrix arm of CI, blue native-polyacrylamide gel electrophoresis (BN-PAGE) revealed a significant reduction of fully assembled CI enzyme and an accumulation of intermediates of the N module. In these cell lines with an assembly defect, NADH dehydrogenase activity was partly functional, even though CI was not fully assembled. We further demonstrated that this functional N module was responsible for ROS production through the reduced flavin mononucleotide. Due to the assembly defect, the FMN site was not re-oxidized leading to a significant oxidative stress in cell lines with an assembly defect. These findings not only highlight the relationship between CI assembly and oxidative stress, but also show the suitability of BN-PAGE analysis in evaluating the consequences of CI dysfunction. Moreover, these data suggest that the use of antioxidants may be particularly relevant for patients displaying a CI assembly defect.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/metabolismo , Estresse Oxidativo/fisiologia , Trifosfato de Adenosina/metabolismo , Estudos de Casos e Controles , Células Cultivadas , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Humanos , Doenças Mitocondriais/genética , Modelos Moleculares , Mutação , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA