Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 418, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294626

RESUMO

In the realm of animal breeding for sustainability, domestic camels have traditionally been valued for their milk and meat production. However, key aspects such as zoometrics, biomechanics, and behavior have often been overlooked in terms of their genetic foundations. Recognizing this gap, the present study perfomed genome-wide association analyses to identify genetic markers associated with zoometrics-, biomechanics-, and behavior-related traits in dromedary camels (Camelus dromedarius). 16 and 108 genetic markers were significantly associated (q < 0.05) at genome and chromosome-wide levels of significance, respectively, with zoometrics- (width, length, and perimeter/girth), biomechanics- (acceleration, displacement, spatial position, and velocity), and behavior-related traits (general cognition, intelligence, and Intelligence Quotient (IQ)) in dromedaries. In most association loci, the nearest protein-coding genes are linkedto neurodevelopmental and sensory disorders. This suggests that genetic variations related to neural development and sensory perception play crucial roles in shaping a dromedary camel's physical characteristics and behavior. In summary, this research advances our understanding of the genomic basis of essential traits in dromedary camels. Identifying specific genetic markers associated with zoometrics, biomechanics, and behavior provides valuable insights into camel domestication. Moreover, the links between these traits and genes related to neurodevelopmental and sensory disorders highlight the broader implications of domestication and modern selection on the health and welfare of dromedary camels. This knowledge could guide future breeding strategies, fostering a more holistic approach to camel husbandry and ensuring the sustainability of these animals in diverse agricultural contexts.


Assuntos
Comportamento Animal , Camelus , Estudo de Associação Genômica Ampla , Animais , Camelus/genética , Camelus/fisiologia , Estudo de Associação Genômica Ampla/veterinária , Comportamento Animal/fisiologia , Fenômenos Biomecânicos , Loci Gênicos , Marcadores Genéticos , Feminino , Masculino
2.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34893856

RESUMO

Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3'-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.


Assuntos
Genoma , Carneiro Doméstico , Animais , Ásia , Europa (Continente) , Variação Genética , Irã (Geográfico) , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Ovinos/genética , Carneiro Doméstico/genética
3.
Genet Sel Evol ; 55(1): 24, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013467

RESUMO

BACKGROUND: To enhance and extend the knowledge about the global historical and phylogenetic relationships between Merino and Merino-derived breeds, 19 populations were genotyped with the OvineSNP50 BeadChip specifically for this study, while an additional 23 populations from the publicly available genotypes were retrieved. Three complementary statistical tests, Rsb (extended haplotype homozygosity between-populations), XP-EHH (cross-population extended haplotype homozygosity), and runs of homozygosity (ROH) islands were applied to identify genomic variants with potential impact on the adaptability of Merino genetic type in two contrasting climate zones. RESULTS: The results indicate that a large part of the Merino's genetic relatedness and admixture patterns are explained by their genetic background and/or geographic origin, followed by local admixture. Multi-dimensional scaling, Neighbor-Net, Admixture, and TREEMIX analyses consistently provided evidence of the role of Australian, Rambouillet and German strains in the extensive gene introgression into the other Merino and Merino-derived breeds. The close relationship between Iberian Merinos and other South-western European breeds is consistent with the Iberian origin of the Merino genetic type, with traces from previous contributions of other Mediterranean stocks. Using Rsb and XP-EHH approaches, signatures of selection were detected spanning four genomic regions located on Ovis aries chromosomes (OAR) 1, 6 and 16, whereas two genomic regions on OAR6, that partially overlapped with the previous ones, were highlighted by ROH islands. Overall, the three approaches identified 106 candidate genes putatively under selection. Among them, genes related to immune response were identified via the gene interaction network. In addition, several candidate genes were found, such as LEKR1, LCORL, GHR, RBPJ, BMPR1B, PPARGC1A, and PRKAA1, related to morphological, growth and reproductive traits, adaptive thermogenesis, and hypoxia responses. CONCLUSIONS: To the best of our knowledge, this is the first comprehensive dataset that includes most of the Merino and Merino-derived sheep breeds raised in different regions of the world. The results provide an in-depth picture of the genetic makeup of the current Merino and Merino-derived breeds, highlighting the possible selection pressures associated with the combined effect of anthropic and environmental factors. The study underlines the importance of Merino genetic types as invaluable resources of possible adaptive diversity in the context of the occurring climate changes.


Assuntos
Variação Genética , Carneiro Doméstico , Ovinos/genética , Animais , Carneiro Doméstico/genética , Filogenia , Austrália , Genótipo , Polimorfismo de Nucleotídeo Único
4.
Anim Genet ; 54(1): 78-81, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36321295

RESUMO

Mycobacterium avium ssp. paratuberculosis (MAP), causes Johne's disease (JD), or paratuberculosis, a chronic enteritis of ruminants, which in goats is characterized by ileal lesions. The work described here is a case-control association study using the Illumina Caprine SNP50 BeadChip to unravel the genes involved in susceptibility of goats to JD. Goats in herds with a high occurrence of Johne's disease were classified as healthy or infected based on the level of serum antibodies against MAP, and 331 animals were selected for the association study. Goats belonged to the Jonica (157) and Siriana breeds (174). Whole-genome association analysis identified one region suggestive of significance associated with an antibody response to MAP on chromosome 7 (p-value = 1.23 × 10-5 ). These results provide evidence for genetic loci involved in the antibody response to MAP in goats.


Assuntos
Doenças dos Bovinos , Doenças das Cabras , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Paratuberculose/genética , Paratuberculose/epidemiologia , Paratuberculose/microbiologia , Cabras/genética , Estudo de Associação Genômica Ampla/veterinária , Mycobacterium avium/genética , Formação de Anticorpos/genética , Mycobacterium avium subsp. paratuberculosis/genética , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças dos Bovinos/genética , Doenças das Cabras/genética
5.
Mol Biol Evol ; 38(3): 838-855, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941615

RESUMO

How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.


Assuntos
Adaptação Biológica/genética , Resistência à Doença/genética , Introgressão Genética , Ovinos/genética , Animais , Evolução Biológica , Mudança Climática , Variação Genética , Filogeografia , Pneumonia/imunologia , Ovinos/imunologia
6.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162971

RESUMO

H+/K+ ATPase Type 2 is an heteromeric membrane protein involved in cation transmembrane transport and consists of two subunits: a specific α subunit (ATP12A) and a non-specific ß subunit. The aim of this study was to demonstrate the presence and establish the localization of ATP12A in spermatozoa from Bubalus bubalis, Bos taurus and Ovis aries. Immunoblotting revealed, in all three species, a major band (100 kDa) corresponding to the expected molecular mass. The ATP12A immunolocalization pattern showed, consistently in the three species, a strong signal at the acrosome. These results, described here for the first time in spermatozoa, are consistent with those observed for the ß1 subunit of Na+/K+ ATPase, suggesting that the latter may assemble with the α subunit to produce a functional ATP12A dimer in sperm cells. The above scenario appeared to be nicely supported by 3D comparative modeling and interaction energy calculations. The expression of ATP12A during different stages of bovine sperm maturation progressively increased, moving from epididymis to deferent ducts. Based on overall results, we hypothesize that ATP12A may play a role in acrosome reactions. Further studies will be required in order to address the functional role of this target protein in sperm physiology.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio , Espermatozoides , Animais , Búfalos/metabolismo , Bovinos , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Transporte de Íons , Masculino , ATPase Trocadora de Sódio-Potássio/metabolismo , Espermatozoides/metabolismo
7.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499353

RESUMO

Up to the present day, studies on the therapeutic properties of camel (Camelus spp.) urine and the detailed characterization of its metabolomic profile are scarce and often unrelated. Information on inter individual variability is noticeably limited, and there is a wide divergence across studies regarding the methods for sample storage, pre-processing, and extract derivatization for metabolomic analysis. Additionally, medium osmolarity is not experimentally adjusted prior to bioactivity assays. In this scenario, the methodological standardization and interdisciplinary approach of such processes will strengthen the interpretation, repeatability, and replicability of the empirical results on the compounds with bioactive properties present in camel urine. Furthermore, sample enlargement would also permit the evaluation of camel urine's intra- and interindividual variability in terms of chemical composition, bioactive effects, and efficacy, while it may also permit researchers to discriminate potential animal-intrinsic and extrinsic conditioning factors. Altogether, the results would help to evaluate the role of camel urine as a natural source for the identification and extraction of specific novel bioactive substances that may deserve isolated chemical and pharmacognostic investigations through preclinical tests to determine their biological activity and the suitability of their safety profile for their potential inclusion in therapeutic formulas for improving human and animal health.


Assuntos
Líquidos Corporais , Camelus , Animais , Humanos
8.
Genet Sel Evol ; 53(1): 48, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078254

RESUMO

BACKGROUND: During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. RESULTS: Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. Clustering analyses show that Podolian breeds share close genomic relationships, which suggests a likely common genetic ancestry. Among the simulated and tested scenarios of the colonization of Europe from taurine cattle, the greatest support was obtained for the model assuming at least two waves of diffusion. Time estimates are in line with an early migration from the domestication centre of non-Podolian taurine breeds followed by a secondary migration of Podolian breeds. The best fitting model also suggests that the Italian Podolian breeds are the result of admixture between different genomic pools. CONCLUSIONS: This comprehensive dataset that includes most of the autochthonous cattle breeds belonging to the so-called Podolian trunk allowed us not only to shed light onto the origin and diversification of this group of cattle, but also to gain new insights into the diffusion of European cattle. The most well-supported scenario of colonization points to two main waves of migrations: with one that occurred alongside with the Neolithic human expansion and gave rise to the non-Podolian taurine breeds, and a more recent one that favoured the diffusion of European Podolian. In this process, we highlight the importance of both the Mediterranean and Danube routes in promoting European cattle colonization. Moreover, we identified admixture as a driver of diversification in Italy, which could represent a melting pot for Podolian cattle.


Assuntos
Bovinos/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Distribuição Animal , Animais , Teorema de Bayes , Evolução Molecular , Frequência do Gene
9.
Genet Sel Evol ; 53(1): 92, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895134

RESUMO

BACKGROUND: Climate and farming systems, several of which are considered as low-input agricultural systems, vary between goat populations from Northern and Southern Italy and have led to different management practices. These processes have impacted genome shaping in terms of inbreeding and regions under selection and resulted in differences between the northern and southern populations. Both inbreeding and signatures of selection can be pinpointed by the analysis of runs of homozygosity (ROH), which provides useful information to assist the management of this species in different rural areas. RESULTS: We analyzed the ROH distribution and inbreeding (FROH) in 902 goats from the Italian Goat Consortium2 dataset. We evaluated the differences in individual ROH number and length between goat breeds from Northern (NRD) and Central-southern (CSD) Italy. Then, we identified the signatures of selection that differentiate these two groups using three methods: ROH, ΔROH, and averaged FST. ROH analyses showed that some Italian goat breeds have a lower inbreeding coefficient, which is attributable to their management and history. ROH are longer in breeds that are undergoing non-optimal management or with small population size. In several small breeds, the ROH length classes are balanced, reflecting more accurate mating planning. The differences in climate and management between the NRD and CSD groups have resulted in different ROH lengths and numbers: the NRD populations bred in isolated valleys present more and shorter ROH segments, while the CSD populations have fewer and longer ROH, which is likely due to the fact that they have undergone more admixture events during the horizontal transhumance practice followed by a more recent standardization. We identified four genes within signatures of selection on chromosome 11 related to fertility in the NRD group, and 23 genes on chromosomes 5 and 6 related to growth in the CSD group. Finally, we identified 17 genes on chromosome 12 related to environmental adaptation and body size with high homozygosity in both groups. CONCLUSIONS: These results show how different management practices have impacted the level of genomic inbreeding in two Italian goat groups and could be useful to assist management in a low-input system while safeguarding the diversity of small populations.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Animais , Genoma , Cabras/genética , Homozigoto , Endogamia
10.
Genet Sel Evol ; 52(1): 40, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664855

RESUMO

BACKGROUND: Assessment of genetic diversity and population structure provides important control metrics to avoid genetic erosion, inbreeding depression and crossbreeding between exotic and locally-adapted cattle breeds since these events can have deleterious consequences and eventually lead to extinction. Historically, the Alpine Arc represents an important pocket of cattle biodiversity with a large number of autochthonous breeds that provide a fundamental source of income for the entire regional economy. By using genotype data from medium-density single nucleotide polymorphism (SNP) arrays, we performed a genome-wide comparative study of 23 cattle populations from the Alpine Arc and three cosmopolitan breeds. RESULTS: After filtering, we obtained a final genotyping dataset consisting of 30,176 SNPs for 711 individuals. The local breeds showed high or intermediate values of genetic diversity compared to the highly selected cosmopolitan breeds. Patterns of genetic differentiation, multidimensional scaling, admixture analysis and the constructed phylogenetic tree showed convergence, which indicates the presence of gene flow among the breeds according to both geographic origin and historical background. Among the most differentiated breeds, we identified the modern Brown cattle. In spite of admixture events, several local breeds have preserved distinctive characteristics, which is probably due to differences in genetic origin and geographic location. CONCLUSIONS: This study represents one of the most comprehensive genome-wide analysis of the Alpine cattle breeds to date. Using such a large dataset that includes the majority of the local breeds found in this region, allowed us to expand knowledge on the evaluation and status of Alpine cattle biodiversity. Our results indicate that although many of the analyzed local breeds are listed as endangered, they still harbor a large amount of genetic diversity, even when compared to some cosmopolitan breeds. This finding, together with the reconstruction of the phylogeny and the relationships between these Alpine Arc cattle breeds, provide crucial insights not only into the improvement of genetic stocks but also into the implementation of future conservation strategies.


Assuntos
Bovinos/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/classificação , Evolução Molecular , Genótipo
11.
Genet Sel Evol ; 52(1): 25, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408891

RESUMO

BACKGROUND: In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. RESULTS: We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed [Formula: see text] profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. CONCLUSIONS: Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population.


Assuntos
Genética Populacional/métodos , Polimorfismo de Nucleotídeo Único/genética , Ovinos/genética , Animais , Península Balcânica , Cruzamento/métodos , Domesticação , Testes Genéticos/métodos , Variação Genética/genética , Genótipo , Filogenia , Filogeografia/métodos
12.
J Anim Breed Genet ; 137(6): 609-621, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32219904

RESUMO

The Valdostana is a local dual purpose cattle breed developed in Italy. Three populations are recognized within this breed, based on coat colour, production level, morphology and temperament: Valdostana Red Pied (VPR), Valdostana Black Pied (VPN) and Valdostana Chestnut (VCA). Here, we investigated putative genomic regions under selection among these three populations using the Bovine 50K SNP array by combining three different statistical methods based either on allele frequencies (FST ) or extended haplotype homozygosity (iHS and Rsb). In total, 8, 5 and 8 chromosomes harbouring 13, 13 and 16 genomic regions potentially under selection were identified by at least two approaches in VPR, VPN and VCA, respectively. Most of these candidate regions were population-specific but we found one common genomic region spanning 2.38 Mb on BTA06 which either overlaps or is located close to runs of homozygosity islands detected in the three populations. This region included inter alia two well-known genes: KDR, a well-established coat colour gene, and CLOCK, which plays a central role in positive regulation of inflammatory response and in the regulation of the mammalian circadian rhythm. The other candidate regions identified harboured genes associated mainly with milk and meat traits as well as genes involved in immune response/inflammation or associated with behavioural traits. This last category of genes was mainly identified in VCA, which is selected for fighting ability. Overall, our results provide, for the first time, a glimpse into regions of the genome targeted by selection in Valdostana cattle. Finally, this study illustrates the relevance of using multiple complementary approaches to identify genomic regions putatively under selection in livestock.


Assuntos
Comportamento Animal , Genoma/genética , Locos de Características Quantitativas/genética , Seleção Genética , Animais , Cruzamento , Bovinos , Frequência do Gene/genética , Estudos de Associação Genética , Genótipo , Haplótipos/genética , Homozigoto , Carne , Leite , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
13.
Mol Reprod Dev ; 86(10): 1430-1443, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31410935

RESUMO

Beauvericin (BEA) is a mycotoxin produced by Beauveria bassiana and Fusarium species recently reported as toxic on porcine oocyte maturation and embryo development. The aim of this study was to assess, in the juvenile sheep, whether its effects are due to alterations of oocyte and/or embryo bioenergetic/oxidative status. Cumulus-oocyte-complexes (COCs) were exposed to BEA during in vitro maturation (IVM), evaluated for cumulus cell (CC) apoptosis, oocyte maturation and bioenergetic/oxidative status or subjected to in vitro fertilization (IVF) and embryo culture (IVEC). Oocyte nuclear maturation and embryo development were assessed after Hoechst staining and CC apoptosis was analysed by terminal deoxynucleotidyl transferase-mediated dUTP nick-End labeling assay and chromatin morphology after Hoechst staining by epifluorescence microscopy. Oocyte and blastocyst bioenergetic/oxidative status were assessed by confocal microscopy after mitochondria and reactive oxygen species labelling with specific probes. BEA showed various toxic effects, that is, short-term effects on somatic and germinal compartment of the COC (CCs and the oocyte) and long-term carry-over effects on developing embryos. In detail, at 5 µM, it significantly reduced oocyte maturation and immature oocytes showed increased late-stage (Type C) CC apoptosis and DNA fragmentation while matured oocytes showed unaffected CC viability but abnormal mitochondrial distribution patterns. At lower tested concentrations (3-0.5 µM), BEA did not affect oocyte maturation, but matured oocytes showed reduced mitochondrial activity. At low concentrations, BEA impaired embryo developmental capacity and blastocyst quality after IVF and IVEC. In conclusion, in the juvenile sheep, COC exposure to BEA induces CC apoptosis and oocyte mitochondrial dysfunction with negative impact on embryo development.


Assuntos
Depsipeptídeos/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Micotoxinas/toxicidade , Oócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ovinos
14.
J Anim Breed Genet ; 136(6): 526-534, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31206848

RESUMO

Selective breeding has led to modifications in the genome of many livestock breeds. In this study, we identified the genomic regions that may explain some of the phenotypic differences between two closely related breeds from Sardinia. A total of 44 animals, 20 Sardinian Ancestral Black (SAB) and 24 Sardinian White (SW), were genotyped using the Illumina Ovine 50K array. A total of 68, 38 and 15 significant markers were identified using the case-control genome-wide association study (GWAS), the Bayesian population differentiation analysis (FST ) and the Rsb metric, respectively. Comparisons among the approaches revealed a total of 22 overlapping markers between GWAS and FST and one marker between GWAS and Rsb. Three markers detected by Rsb were also located near (<2 Mb) to highly significant regions identified by GWAS and FST analyses. Moreover, one candidate marker identified by GWAS and FST approaches was located in a run of homozygosity island that was shared by both breeds. We identified several genes involved in many phenotypic differences (such as stature and growth, reproduction, ear size, coat colour, behaviour) between the two analysed breeds. This study shows that combining several genome-wide approaches could improve discovery of regions involved in the variability of breeding traits and responsible for the phenotypic diversity even between closely related breeds. Overall, the combination of such genome-wide methods can be extended to other livestock breeds that share between them a similar genetic background, to understand the process that shapes the patterns of genetic variability between closely related populations.


Assuntos
Genômica , Fenótipo , Ovinos/genética , Animais , Genótipo , Homozigoto , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único
15.
Reproduction ; 155(5): 433-445, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29491124

RESUMO

Sperm motility, a feature essential for in vivo fertilization, is influenced by intracellular pH (pHi) homeostasis. Several mechanisms are involved in pHi regulation, among which sodium-hydrogen exchangers (NHEs), a family of integral transmembrane proteins that catalyze the exchange of Na+ for H+ across lipid bilayers. A preliminary characterization of NHE activity and kinetic parameters, followed by analysis of the expression and localization of the protein in ram spermatozoa was performed. NHE activity showed an apparent Km for external Na+ of 17.61 mM. Immunoblotting revealed a molecular mass of 85 kDa. Immunolocalization pattern showed some species-specific aspects, such as positive labeling at the equatorial region of the sperm head. Cariporide, a selective NHE1 inhibitor, significantly reduced pHi recovery (85%). Similarly, exposure to cariporide significantly inhibited different motility parameters, including those related to sperm capacitation. In vitro fertilization (IVF) was not affected by cariporide, possibly due to the non-dramatic, although significant, drop in motility and velocity parameters or due to prolonged exposure during IVF, which may have caused progressive loss of its inhibitory effect. In conclusion, this is the first study documenting, in a large animal model (sheep) of well-known translational relevance, a direct functional role of NHE on sperm pHi and motility. The postulated specificity of cariporide toward isoform 1 of the Na+/H+ exchanger seems to suggest that NHE1 may contribute to the observed effects on sperm cell functionality.


Assuntos
Guanidinas/farmacologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Concentração de Íons de Hidrogênio , Masculino , Ovinos , Capacitação Espermática/efeitos dos fármacos , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo
16.
Genet Sel Evol ; 50(1): 35, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29940848

RESUMO

BACKGROUND: In the last 50 years, the diversity of cattle breeds has experienced a severe contraction. However, in spite of the growing diffusion of cosmopolite specialized breeds, several local cattle breeds are still farmed in Italy. Genetic characterization of breeds represents an essential step to guide decisions in the management of farm animal genetic resources. The aim of this work was to provide a high-resolution representation of the genome-wide diversity and population structure of Italian local cattle breeds using a medium-density single nucleotide polymorphism (SNP) array. RESULTS: After quality control filtering, the dataset included 31,013 SNPs for 800 samples from 32 breeds. Our results on the genetic diversity of these breeds agree largely with their recorded history. We observed a low level of genetic diversity, which together with the small size of the effective populations, confirmed that several breeds are threatened with extinction. According to the analysis of runs of homozygosity, evidence of recent inbreeding was strong in some local breeds, such as Garfagnina, Mucca Pisana and Pontremolese. Patterns of genetic differentiation, shared ancestry, admixture events, and the phylogenetic tree, all suggest the presence of gene flow, in particular among breeds that originate from the same geographical area, such as the Sicilian breeds. In spite of the complex admixture events that most Italian cattle breeds have experienced, they have preserved distinctive characteristics and can be clearly discriminated, which is probably due to differences in genetic origin, environment, genetic isolation and inbreeding. CONCLUSIONS: This study is the first exhaustive genome-wide analysis of the diversity of Italian cattle breeds. The results are of significant importance because they will help design and implement conservation strategies. Indeed, efforts to maintain genetic diversity in these breeds are needed. Improvement of systems to record and monitor inbreeding in these breeds may contribute to their in situ conservation and, in view of this, the availability of genomic data is a fundamental resource.


Assuntos
Animais Domésticos/genética , Conservação dos Recursos Naturais/métodos , Variação Genética , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Bovinos , Evolução Molecular , Genética Populacional , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Filogenia , Densidade Demográfica
17.
BMC Genomics ; 18(1): 59, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28068911

RESUMO

BACKGROUND: Melon (Cucumis melo L.) is one of the most important horticultural species, which includes several taxonomic groups. With the advent of next-generation sequencing, single nucleotide polymorphism (SNP) markers are widely used in the study of genetic diversity and genomics. RESULTS: We report the first successful application of genotyping-by-sequencing (GBS) technology in melon. We detected 25,422 SNPs by the analysis of 72 accessions collected in Apulia, a secondary centre of diversity in Southern Italy. Analyses of genetic structure, principal components, and hierarchical clustering support the identification of three distinct subpopulations. One of them includes accessions known with the folk name of 'carosello', referable to the chate taxonomic group. This is one of the oldest domesticated forms of C. melo, once widespread in Europe and now exposed to the risk of genetic erosion. The second subpopulation contains landraces of 'barattiere', a regional vegetable production that was never characterized at the DNA level and we show was erroneously considered another form of chate melon. The third subpopulation includes genotypes of winter melon (C. melo var. inodorus). Genetic analysis within each subpopulation revealed patterns of diversity associated with fruit phenotype and geographical origin. We used SNP data to describe, for each subpopulation, the average linkage disequilibrium (LD) decay, and to highlight genomic regions possibly resulting from directional selection and associated with phenotypic variation. CONCLUSIONS: We used GBS to characterize patterns of genetic diversity and genomic features within C. melo. We provide useful information to preserve endangered gene pools and to guide the use of germplasm in breeding. Finally, our findings lay a foundation for molecular breeding approaches and the identification of genes underlying phenotypic traits.


Assuntos
Cucumis melo/genética , Pool Gênico , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação
18.
PLoS Biol ; 10(2): e1001258, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22346734

RESUMO

Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.


Assuntos
Seleção Genética , Ovinos/genética , África , Animais , Ásia , Europa (Continente) , Frequência do Gene , Genoma , Modelos Genéticos , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
19.
Genet Sel Evol ; 47: 64, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26272467

RESUMO

BACKGROUND: Merino and Merino-derived sheep breeds have been widely distributed across the world, both as purebred and admixed populations. They represent an economically and historically important genetic resource which over time has been used as the basis for the development of new breeds. In order to examine the genetic influence of Merino in the context of a global collection of domestic sheep breeds, we analyzed genotype data that were obtained with the OvineSNP50 BeadChip (Illumina) for 671 individuals from 37 populations, including a subset of breeds from the Sheep HapMap dataset. RESULTS: Based on a multi-dimensional scaling analysis, we highlighted four main clusters in this dataset, which corresponded to wild sheep, mouflon, primitive North European breeds and modern sheep (including Merino), respectively. The neighbor-network analysis further differentiated North-European and Mediterranean domestic breeds, with subclusters of Merino and Merino-derived breeds, other Spanish breeds and other Italian breeds. Model-based clustering, migration analysis and haplotype sharing indicated that genetic exchange occurred between archaic populations and also that a more recent Merino-mediated gene flow to several Merino-derived populations around the world took place. The close relationship between Spanish Merino and other Spanish breeds was consistent with an Iberian origin for the Merino breed, with possible earlier contributions from other Mediterranean stocks. The Merino populations from Australia, New Zealand and China were clearly separated from their European ancestors. We observed a genetic substructuring in the Spanish Merino population, which reflects recent herd management practices. CONCLUSIONS: Our data suggest that intensive gene flow, founder effects and geographic isolation are the main factors that determined the genetic makeup of current Merino and Merino-derived breeds. To explain how the current Merino and Merino-derived breeds were obtained, we propose a scenario that includes several consecutive migrations of sheep populations that may serve as working hypotheses for subsequent studies.


Assuntos
Polimorfismo de Nucleotídeo Único , Seleção Artificial/genética , Ovinos/classificação , Ovinos/genética , Animais , Austrália , China , Europa (Continente) , Efeito Fundador , Fluxo Gênico , Estudo de Associação Genômica Ampla , Nova Zelândia , Filogeografia , Dinâmica Populacional
20.
Biol Cell ; 105(9): 399-413, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23718135

RESUMO

BACKGROUND INFORMATION: P2×7R is a member of the ionotropic family of purinergic receptors activated by millimolar concentrations of extracellular ATP such as induced by inflammatory stimuli. The receptor is widely expressed in cells of haematopoietic origin such as monocytes, macrophages and microglia. There is growing interest in anta-gonist compounds of the P2×7R since it has been demonstrated to be a viable therapeutic target for inflammatory diseases. Here, we tested the possible P2×7 antagonist effect of MED1101, a newly synthesised dialdehydic compound on U937 monocyte cells. RESULTS: Human U937 cells express the full-length P2×7A receptor isoform. Treatment with lipopolysaccharide (LPS), a potent inducer of inflammation, significantly increased the expression of the receptor in the plasma membrane. Importantly, MED1101 induced internalisation of the P2×7R already after 30 min incubation in both physiological conditions and in presence of the inflammatory stimulus (LPS) and this effect was observable for up to 12 h after its removal. Moreover, MED1101 induced an impairment of monocyte migration/transmigration through direct P2×7R antagonism and subsequent inhibition of the intracellular signal transduction processes of Ca2+ influx and MAPK phosphorylation. CONCLUSIONS: Our results clearly demonstrate that in U937 monocyte cells MED1101 acts as a P2×7R antagonist through the induction of receptor internalisation and subsequent inhibition of down-stream signal transduction pathways that regulate monocyte migration/transmigration, thus playing a potential therapeutic role in inflammatory diseases.


Assuntos
Adenosina/análogos & derivados , Aldeídos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/genética , Adenosina/farmacologia , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Transporte Proteico/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA