RESUMO
BACKGROUND: To enhance and extend the knowledge about the global historical and phylogenetic relationships between Merino and Merino-derived breeds, 19 populations were genotyped with the OvineSNP50 BeadChip specifically for this study, while an additional 23 populations from the publicly available genotypes were retrieved. Three complementary statistical tests, Rsb (extended haplotype homozygosity between-populations), XP-EHH (cross-population extended haplotype homozygosity), and runs of homozygosity (ROH) islands were applied to identify genomic variants with potential impact on the adaptability of Merino genetic type in two contrasting climate zones. RESULTS: The results indicate that a large part of the Merino's genetic relatedness and admixture patterns are explained by their genetic background and/or geographic origin, followed by local admixture. Multi-dimensional scaling, Neighbor-Net, Admixture, and TREEMIX analyses consistently provided evidence of the role of Australian, Rambouillet and German strains in the extensive gene introgression into the other Merino and Merino-derived breeds. The close relationship between Iberian Merinos and other South-western European breeds is consistent with the Iberian origin of the Merino genetic type, with traces from previous contributions of other Mediterranean stocks. Using Rsb and XP-EHH approaches, signatures of selection were detected spanning four genomic regions located on Ovis aries chromosomes (OAR) 1, 6 and 16, whereas two genomic regions on OAR6, that partially overlapped with the previous ones, were highlighted by ROH islands. Overall, the three approaches identified 106 candidate genes putatively under selection. Among them, genes related to immune response were identified via the gene interaction network. In addition, several candidate genes were found, such as LEKR1, LCORL, GHR, RBPJ, BMPR1B, PPARGC1A, and PRKAA1, related to morphological, growth and reproductive traits, adaptive thermogenesis, and hypoxia responses. CONCLUSIONS: To the best of our knowledge, this is the first comprehensive dataset that includes most of the Merino and Merino-derived sheep breeds raised in different regions of the world. The results provide an in-depth picture of the genetic makeup of the current Merino and Merino-derived breeds, highlighting the possible selection pressures associated with the combined effect of anthropic and environmental factors. The study underlines the importance of Merino genetic types as invaluable resources of possible adaptive diversity in the context of the occurring climate changes.
Assuntos
Variação Genética , Carneiro Doméstico , Ovinos/genética , Animais , Carneiro Doméstico/genética , Filogenia , Austrália , Genótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The objective of this study was to compare the behavioural and immunological responses of twin lambs housed together with their siblings or not after weaning. The study was performed with seven multiparous Milchschaf ewes and their twin lambs (n = 14), which were weaned abruptly at 63 days of age and assigned to two experimental groups: (1) lambs that were housed together with their sibling after weaning (group GT, n = 6) and (2) lambs that were separated from their siblings and remained with other lambs from the same flock (group GS, n = 8). Before and after weaning, the distance between twins, the number of times in which the sibling was the closest lamb, the lambs' behaviours, and the average daily gain were recorded. The lambs' immune response was assessed with the phytohemagglutinin skin test after weaning. The closest lamb before weaning was the sibling in all cases (P < 0.0001 for all). The frequency in which GT lambs were observed closest from its twin increased on the day of weaning (P = 0.002). During the day of weaning, GT lambs vocalised and paced more than GS lambs (P = 0.001 and P = 0.01, respectively). Twenty-four h after the phytohemagglutinin injection, the skinfold thickness was greater in GS than GT lambs (P = 0.03). In conclusion, twin lambs housed together with their siblings were more stressed at weaning, displaying more intensive behavioural changes and a poorer immunological status than twin lambs housed separated from their siblings.
Assuntos
Carneiro Doméstico , Animais , Feminino , Ovinos , DesmameRESUMO
THE AIM OF THIS STUDY WAS TO INVESTIGATE THE GENETIC DIVERSITY WITHIN AND AMONG THREE BREEDS OF SHEEP: Corriedale, Merino and Creole. Sheep from the three breeds (Merino n = 110, Corriedale n = 108 and Creole n = 10) were genotyped using the Illumina Ovine SNP50 beadchip(®). Genetic diversity was evaluated by comparing the minor allele frequency (MAF) among breeds. Population structure and genetic differentiation were assessed using STRUCTURE software, principal component analysis (PCA) and fixation index (FST). Fixed markers (MAF = 0) that were different among breeds were identified as specific breed markers. Using a subset of 18,181 single nucleotide polymorphisms (SNPs), PCA and STUCTURE analysis were able to explain population stratification within breeds. Merino and Corriedale divergent lines showed high levels of polymorphism (89.4% and 86% of polymorphic SNPs, respectively) and moderate genetic differentiation (FST = 0.08) between them. In contrast, Creole had only 69% polymorphic SNPs and showed greater genetic differentiation from the other two breeds (FST = 0.17 for both breeds). Hence, a subset of molecular markers present in the OvineSNP50 is informative enough for breed assignment and population structure analysis of commercial and Creole breeds.
RESUMO
The objective of this study was to identify genomic regions and genes associated with resistance to gastrointestinal nematodes in Australian Merino sheep in Uruguay, using the single-step GWAS methodology (ssGWAS), which is based on genomic estimated breeding values (GEBVs) obtained from a combination of pedigree, genomic, and phenotypic data. This methodology converts GEBVs into SNP effects. The analysis included 26,638 animals with fecal egg count (FEC) records obtained in two independent parasitic cycles (FEC1 and FEC2) and 1700 50K SNP genotypes. The comparison of genomic regions was based on genetic variances (gVar(%)) explained by non-overlapping regions of 20 SNPs. For FEC1 and FEC2, 18 and 22 genomic windows exceeded the significance threshold (gVar(%) ≥ 0.22%), respectively. The genomic regions with strong associations with FEC1 were located on chromosomes OAR 2, 6, 11, 21, and 25, and for FEC2 on OAR 5, 6, and 11. The proportion of genetic variance attributed to the top windows was 0.83% and 1.9% for FEC1 and FEC2, respectively. The 33 candidate genes shared between the two traits were subjected to enrichment analysis, revealing a marked enrichment in biological processes related to immune system functions. These results contribute to the understanding of the genetics underlying gastrointestinal parasite resistance and its implications for other productive and welfare traits in animal breeding programs.
Assuntos
Polimorfismo de Nucleotídeo Único , Doenças dos Ovinos , Animais , Ovinos/parasitologia , Ovinos/genética , Doenças dos Ovinos/genética , Doenças dos Ovinos/parasitologia , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Infecções por Nematoides/genética , Infecções por Nematoides/veterinária , Infecções por Nematoides/parasitologia , Austrália , Contagem de Ovos de Parasitas/veterinária , Enteropatias Parasitárias/genética , Enteropatias Parasitárias/veterinária , Enteropatias Parasitárias/parasitologiaRESUMO
Temperament can be defined as the emotional variability among animals of the same species in response to the same stimulus, grouping animals by their reactivity as nervous, intermediate, or calm. Our goal was to identify genomic regions with the temperament phenotype measured by the Isolation Box Test (IBT) by single-step genome-wide association studies (ssGWAS). The database consisted of 4317 animals with temperament records, and 1697 genotyped animals with 38,268 effective Single Nucleotide Polymorphism (SNP) after quality control. We identified three genomic regions that explained the greatest percentage of the genetic variance, resulting in 25 SNP associated with candidate genes on chromosomes 6, 10, and 21. A total of nine candidate genes are reported for the temperament trait, which is: PYGM, SYVN1, CAPN1, FADS1, SYT7, GRID2, GPRIN3, EEF1A1 and FRY, linked to the energetic activity of the organism, synaptic transmission, meat tenderness, and calcium associated activities. This is the first study to identify these genetic variants associated with temperament in sheep, which could be used as molecular markers in future behavioral research.
Assuntos
Estudo de Associação Genômica Ampla , Temperamento , Animais , Ovinos , Fenótipo , Genótipo , GenomaRESUMO
Underutilized sheep and goat breeds can adapt to challenging environments due to their genetics. Integrating publicly available genomic datasets with new data will facilitate genetic diversity analyses; however, this process is complicated by data discrepancies, such as outdated assembly versions or different data formats. Here, we present the SMARTER-database, a collection of tools and scripts to standardize genomic data and metadata, mainly from SNP chip arrays on global small ruminant populations, with a focus on reproducibility. SMARTER-database harmonizes genotypes for about 12,000 sheep and 6,000 goats to a uniform coding and assembly version. Users can access the genotype data via File Transfer Protocol and interact with the metadata through a web interface or using their custom scripts, enabling efficient filtering and selection of samples. These tools will empower researchers to focus on the crucial aspects of adaptation and contribute to livestock sustainability, leveraging the rich dataset provided by the SMARTER-database. Availability and implementation: The code is available as open-source software under the MIT license at https://github.com/cnr-ibba/SMARTER-database.
RESUMO
The aim of this study was to identify genomic regions and genes associated with the fiber diameter (FD), clean fleece weight (CFW), live weight (LW), body condition score (BCS), pregnancy rate (PR) and lambing potential (LP) of Uruguayan Merino sheep. Phenotypic records of approximately 2000 mixed-age ewes were obtained from a Merino nucleus flock. Genome-wide association studies were performed utilizing single-step Bayesian analysis. For wool traits, a total of 35 genomic windows surpassed the significance threshold (PVE ≥ 0.25%). The proportion of the total additive genetic variance explained by those windows was 4.85 and 9.06% for FD and CFW, respectively. There were 42 windows significantly associated with LWM, which collectively explained 43.2% of the additive genetic variance. For BCS, 22 relevant windows accounted for more than 40% of the additive genetic variance, whereas for the reproduction traits, 53 genomic windows (24 and 29 for PR and LP, respectively) reached the suggestive threshold of 0.25% of the PVE. Within the top 10 windows for each trait, we identified several genes showing potential associations with the wool (e.g., IGF-1, TGFB2R, PRKCA), live weight (e.g., CAST, LAP3, MED28, HERC6), body condition score (e.g., CDH10, TMC2, SIRPA, CPXM1) or reproduction traits (e.g., ADCY1, LEPR, GHR, LPAR2) of the mixed-age ewes.
Assuntos
Estudo de Associação Genômica Ampla , Lã , Gravidez , Animais , Ovinos/genética , Feminino , Teorema de Bayes , Genômica , Carneiro Doméstico/genética , Reprodução/genéticaRESUMO
This study reports genetic parameters for yearling and adult wool and growth traits, and ewe reproductive performance. Data were sourced from an Uruguayan Merino flock involved in a long-term selection program focused on reduced fiber diameter (FD), and increased clean fleece weight (CFW) and live weight (LW). Pedigree and performance data from approximately 5,700 mixed-sex yearling lambs and 2,000 mixed-age ewes born between 1999 and 2019 were analyzed. The number of records ranged from 1,267 to 5,738 for yearling traits, and from 1,931 to 7,079 for ewe productive and reproductive performance. Data on yearling and adult wool traits, LW and body condition score (BCS), yearling eye muscle area (Y_EMA), and fat thickness (Y_FAT), and several reproduction traits were analyzed. The genetic relationships between FD and reproduction traits were not different from zero. Moderate unfavorable genetic correlations were found between adult CFW and ewe lifetime reproduction traits (-0.34â ±â 0.08 and -0.33â ±â 0.09 for the total number of lambs weaned and total lamb LW at weaning, respectively). There were moderate to strong positive genetic correlations between yearling LW and all reproduction traits other than ewe-rearing ability (-0.08â ±â 0.11) and pregnancy rate (0.18â ±â 0.08). The genetic correlations between Y_EMA and reproduction traits were positive and ranged from 0.15 to 0.49. Moderate unfavorable genetic correlations were observed between yearling FD and Y_FAT and between adult FD and BCS at mating (0.31â ±â 0.12 and 0.23â ±â 0.07, respectively). The genetic correlations between adult fleece weight and ewe BCS at different stages of the cycle were negative, but generally not different from zero. This study shows that selection for reduced FD is unlikely to have any effect on reproduction traits. Selection for increased yearling LW and Y_EMA will improve ewe reproductive performance. On the other hand, selection for increased adult CFW will reduce ewe reproductive performance, whereas selection for reduced FD will negatively impact body fat levels. Although unfavorable genetic relationships between wool traits and both FAT and ewe reproductive performance existed, simultaneous improvements in the traits would occur using appropriately designed indexes.
Fiber diameter (FD), clean fleece weight (CFW), live weight (LW), and reproductive performance are important traits in Merino flocks. This study estimated the genetic parameters for a range of production traits and ewe reproductive performance. Data from approximately 5,700 mixed-sex yearling lambs and 2,000 mixed-age ewes born in a single Uruguayan Merino flock were analyzed. There were generally favorable (positive) genetic correlations between LW and reproduction traits. The genetic relationships between FD and reproduction traits were generally negligible. In addition, moderate unfavorable (negative) genetic correlations were found between adult CFW and ewe reproduction traits. This study indicates that selecting finer fleeces will yield little to no change in ewe reproduction traits, whereas heavier fleeces are related to reduced ewe reproductive performance. On the other hand, genetically heavier yearling ewes will display greater reproductive performance.
Assuntos
Reprodução , Lã , Gravidez , Ovinos/genética , Animais , Feminino , Reprodução/genética , Fenótipo , Carneiro Doméstico , Tecido Adiposo , Aumento de PesoRESUMO
Selection of genetically resistant animals is one alternative to reduce the negative impact of gastrointestinal nematodes (GIN) on sheep production. The aim of this study was to identify genomic regions associated with GIN resistance in Corriedale sheep by single-step genome-wide association studies (ssGWAS) using 170, 507 and 50K single nucleotide polymorphisms (SNPs). Analysis included 19,547 lambs with faecal egg counts (FEC) records, a pedigree file of 40,056 animals and 454, 711 and 383 genotypes from 170, 507 and 50K SNPs, respectively. Genomic estimated breeding values (GEBV) were obtained with single-step genomic BLUP methodology (ssGBLUP), using a univariate animal model, which included contemporary group, type of birth and age of dam as class fixed effects and age at FEC recording as covariate. The SNP effects as wells as p-values were estimated with POSTGSF90 program. Significance level was defined by a chromosome-wise False Discovery Rate of 5%. Significant genomic regions were identified in chromosomes 1, 3, 12 and 19 with the 170 SNP set, in chromosomes 7, 12 and 24 using the 507 SNP chip and only in chromosome 7 with the 50K SNP chip. Candidate genes located in these regions, using Oar_v4.0 as reference genome, were TIMP3, TLR5, LEPR and TLR9 (170 SNPs), SYNDIG1L and MGRN1 (507 SNP chip) and INO80, TLN2, TSHR and EIF2AK4 (50K SNP chip). These results validate genomic regions associated with FEC previously identified in Corriedale and other breeds and report new candidate regions for further investigation.
Assuntos
Nematoides , Parasitos , Animais , Estudo de Associação Genômica Ampla , Nematoides/genética , Ovinos/genética , Carneiro Doméstico/genética , Receptor 5 Toll-Like/genética , Receptor Toll-Like 9/genéticaRESUMO
Ocular squamous cell carcinoma and infectious keratoconjunctivitis are common ocular pathologies in Hereford cattle with considerable economic impact. Both pathologies have been associated with low eyelid pigmentation, and thus, genetic selection for higher eyelid pigmentation could reduce their incidence. The objective of the present study was to reveal the genetic basis of eyelid pigmentation in Hereford cattle. The analysis included a single-step genome-wide association study (ssGWAS) and a subsequent gene-set analysis in order to identify individual genes, genetic mechanisms, and biological pathways implicated in this trait. Data consisted of eyelid pigmentation records in 1,165 Hereford bulls and steers, visually assessed in five categories between 0% and 100%. Genotypic data for 774,660 single-nucleotide polymorphism markers were available for 886 animals with pigmentation records. Pedigree information of three generations of ancestors of animals with phenotype was considered in this study, with a total of 4,929 animals. Our analyses revealed that eyelid pigmentation is a moderately heritable trait, with heritability estimates around 0.41. The ssGWAS identified at least eight regions, located on BTA1, BTA3, BTA5, BTA14, BTA16, BTA18, BTA19, and BTA24, associated with eyelid pigmentation. These regions harbor genes that are directly implicated in melanocyte biology and skin pigmentation, such as ADCY8, PLD1, KITLG, and PRKCA. The gene-set analysis revealed several functional terms closely related to melanogenesis, such as positive regulation of melanocyte differentiation and regulation of ERK1 and ERK2 cascade. Overall, our findings provide evidence that eyelid pigmentation is a heritable trait influenced by many loci. Indeed, the ssGWAS detected several candidate genes that are directly implicated in melanocyte biology, including melanogenesis. This study contributes to a better understanding of the genetic and biological basis of eyelid pigmentation and presents novel information that could aid to design breeding strategies for reducing the incidence of ocular pathologies in cattle. Additional research on the genetic link between eyelid pigmentation and ocular pathologies is needed.
Low eyelid pigmentation is considered as a predisposing factor associated with common ocular pathologies in cattle, such as ocular squamous cell carcinoma and infectious keratoconjunctivitis, with considerable economic impact. The aim of our study was to investigate the genetic basis of eyelid pigmentation in Hereford cattle. The analysis included estimation of genetic parameters, a genome-wide association study, and a subsequent gene-set analysis to identify individual genes, genetic mechanisms, and biological pathways implicated in eyelid pigmentation. Our results indicate that eyelid pigmentation is a complex trait, with a moderate heritability around 0.41, and affected by multiple loci, including genes related to melanocyte biology, melanogenesis, skin pigmentation, and development of melanoma. Evidence that biological processes such as melanocyte development and melanocyte differentiation explain part of the observed variation in eyelid pigmentation were also found. Overall, this study provides a better understanding of the genetics underlying eyelid pigmentation in Hereford. Our findings could contribute to point out breeding strategies for reducing the incidence of ocular pathologies in cattle.
Assuntos
Estudo de Associação Genômica Ampla , Pigmentação , Animais , Bovinos/genética , Pálpebras , Estudo de Associação Genômica Ampla/veterinária , Masculino , Fenótipo , Pigmentação/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Characterized as the most important gastrointestinal parasite (GIP) in the world, Haemonchus contortus is also the most predominant and pathogenic genus in Uruguay, causing high morbidity and mortality rates in sheep flocks. For approximately 26 years resistance to GIP has been included in the National Genetic Evaluation (NGE) of Corriedale and Merino breeds, using Faecal Egg Count (FEC) as the selection criterion. The aim of the present study was to estimate genetic parameters for FEC, post-weaning Body Weight (BW), Packed Cell Volume (PCV), FAMACHA© and Body Condition Score (BCS), to determine the possibility to include these traits in the NGE of GIP resistance and resilience, as complementary selection criteria and to investigate the sensitivity of breeding values to different environmental worm burden challenges. Data were collected on 19,510 lambs from 2000 to 2009 in 24 Corriedale studs that participated in the NGE of sheep in Uruguay. (Co)variances components were estimated using a multi-trait animal model performing a Bayesian analysis. Posterior means estimated for heritability (h2) were of low to moderate magnitude (between 0.10 and 0.33) for the traits analysed. Genetic correlations (rg) were not significantly different from zero for BW- Loge (FECâ¯+â¯100), BW-FAMACHA©, BW-PCV, Loge (FECâ¯+â¯100)-PCV, BCS-FAMACHA©, moderate favourable rg for Loge (FECâ¯+â¯100)-FAMACHA and PCV-BCS (0.55, 0.41) and high favourable rg for BW-BCS (0.66). These results indicate the possibility to complement selection programs incorporating BW, Loge (FECâ¯+â¯100), FAMACHA©, PCV and BCS in order to select resistant and resilient animal to GIP. Furthermore, genetic parameters for BW and Loge (FECâ¯+â¯100) to different environmental worm burden challenge was investigated. Two contemporary groups of low worm environment (Loge (FECâ¯+â¯100) below 6.40) and a high worm environment (Loge (FECâ¯+â¯100) above 6.75) were considered. In this model, h2 estimated for BW and Loge (FECâ¯+â¯100) were found to be not statistically different between low and high environmental worm burden, furthermore, high correlations between traits at both environments were also presented.
RESUMO
Gastrointestinal nematode infections, including Haemonchus contortus, are one of the main causes of economic losses to ovine farmers worldwide. In order to contribute to the control of nematode infections and avoid parasite spreading we generated divergent resistant and susceptible sheep breeds and evaluated the adaptive immunity of these animals developed upon experimental infection against H. contortus. The selection of resistant or susceptible animals from the Corriedale Breed has been based on Expected Progeny Differences for faecal egg counts per gram. Furthermore, animals from the resistant Corriedale line were inseminated with imported semen from Australian Rylington Merino rams. Thus, the objective of this work was to analyze the adaptive immune response in both susceptible and resistant obtained lambs. Our results indicate that there is a potent parasite-specific local and systemic immune response in resistant animals and that although susceptible lambs can produce high levels of IgA antibodies during the infection, their antibody response is delayed which, together with an impaired specific-Th2 response, does not contribute to initial parasite elimination. Our results shed light into the immune mechanisms that mediate resistance to H. contortus and could constitute important assets to sheep farmers, not only as a means to detect resistance, but also to enhance the efficiency of selection in stud flocks.
Assuntos
Haemonchus/patogenicidade , Imunidade Adaptativa/fisiologia , Animais , Formação de Anticorpos/fisiologia , Feminino , Haemonchus/imunologia , Imunoglobulina A/metabolismo , Masculino , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/microbiologia , Células Th2/metabolismoRESUMO
Our objectives were to determine if success index of pampas deer females is related with females' age and if social rank makes any influence on reproductive performance. Female social rank was determined in 18 groups of animals composed of 1 male: 5-9 females (total=98 females). Date of parturition for each female and sex and birth weight of fawns were recorded for each birth. The females were categorized in three hierarchical ranks: low (<0.33) (group LR), medium (0.33-0.66) (group MR), and high (>0.66) (group HR). The success index increased with age in pampas deer females (P<0.001). Social rank had no effect on calving success, relative calving dates, sex ratio or body weight at birth. In this study, the success index was related with females' age, and the reproductive performance did not differ between females of different social ranks.