Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cell ; 155(7): 1479-91, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360272

RESUMO

The spatiotemporal organization and dynamics of chromatin play critical roles in regulating genome function. However, visualizing specific, endogenous genomic loci remains challenging in living cells. Here, we demonstrate such an imaging technique by repurposing the bacterial CRISPR/Cas system. Using an EGFP-tagged endonuclease-deficient Cas9 protein and a structurally optimized small guide (sg) RNA, we show robust imaging of repetitive elements in telomeres and coding genes in living cells. Furthermore, an array of sgRNAs tiling along the target locus enables the visualization of nonrepetitive genomic sequences. Using this method, we have studied telomere dynamics during elongation or disruption, the subnuclear localization of the MUC4 loci, the cohesion of replicated MUC4 loci on sister chromatids, and their dynamic behaviors during mitosis. This CRISPR imaging tool has potential to significantly improve the capacity to study the conformation and dynamics of native chromosomes in living human cells.


Assuntos
Técnicas Genéticas , Telômero , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Mitose , Dados de Sequência Molecular , Mucina-4/genética
2.
Nat Methods ; 21(6): 1114-1121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594452

RESUMO

The identification of genetic and chemical perturbations with similar impacts on cell morphology can elucidate compounds' mechanisms of action or novel regulators of genetic pathways. Research on methods for identifying such similarities has lagged due to a lack of carefully designed and well-annotated image sets of cells treated with chemical and genetic perturbations. Here we create such a Resource dataset, CPJUMP1, in which each perturbed gene's product is a known target of at least two chemical compounds in the dataset. We systematically explore the directionality of correlations among perturbations that target the same protein encoded by a given gene, and we find that identifying matches between chemical and genetic perturbations is a challenging task. Our dataset and baseline analyses provide a benchmark for evaluating methods that measure perturbation similarities and impact, and more generally, learn effective representations of cellular state from microscopy images. Such advancements would accelerate the applications of image-based profiling of cellular states, such as uncovering drug mode of action or probing functional genomics.


Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos
3.
Nat Methods ; 21(6): 1103-1113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532015

RESUMO

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.


Assuntos
Algoritmos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Análise de Célula Única , Análise de Célula Única/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Microscopia/métodos , Animais
4.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37710020

RESUMO

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Assuntos
Lista de Checagem , Editoração , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador , Microscopia
5.
Nat Methods ; 21(2): 182-194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347140

RESUMO

Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multistage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides a reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Although focused on biomedical image analysis, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key topic in image analysis validation.


Assuntos
Inteligência Artificial
6.
Nat Methods ; 21(2): 195-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347141

RESUMO

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Semântica
7.
PLoS Biol ; 21(6): e3002167, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37368874

RESUMO

Technological advancements in biology and microscopy have empowered a transition from bioimaging as an observational method to a quantitative one. However, as biologists are adopting quantitative bioimaging and these experiments become more complex, researchers need additional expertise to carry out this work in a rigorous and reproducible manner. This Essay provides a navigational guide for experimental biologists to aid understanding of quantitative bioimaging from sample preparation through to image acquisition, image analysis, and data interpretation. We discuss the interconnectedness of these steps, and for each, we provide general recommendations, key questions to consider, and links to high-quality open-access resources for further learning. This synthesis of information will empower biologists to plan and execute rigorous quantitative bioimaging experiments efficiently.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia
8.
Nat Methods ; 19(12): 1550-1557, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344834

RESUMO

Cells can be perturbed by various chemical and genetic treatments and the impact on gene expression and morphology can be measured via transcriptomic profiling and image-based assays, respectively. The patterns observed in these high-dimensional profile data can power a dozen applications in drug discovery and basic biology research, but both types of profiles are rarely available for large-scale experiments. Here, we provide a collection of four datasets with both gene expression and morphological profile data useful for developing and testing multimodal methodologies. Roughly a thousand features are measured for each of the two data types, across more than 28,000 chemical and genetic perturbations. We define biological problems that use the shared and complementary information in these two data modalities, provide baseline analysis and evaluation metrics for multi-omic applications, and make the data resource publicly available ( https://broad.io/rosetta/ ).


Assuntos
Descoberta de Drogas , Perfilação da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Expressão Gênica
9.
J Microsc ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532662

RESUMO

As microscopy diversifies and becomes ever more complex, the problem of quantification of microscopy images has emerged as a major roadblock for many researchers. All researchers must face certain challenges in turning microscopy images into answers, independent of their scientific question and the images they have generated. Challenges may arise at many stages throughout the analysis process, including handling of the image files, image pre-processing, object finding, or measurement, and statistical analysis. While the exact solution required for each obstacle will be problem-specific, by keeping analysis in mind, optimizing data quality, understanding tools and tradeoffs, breaking workflows and data sets into chunks, talking to experts, and thoroughly documenting what has been done, analysts at any experience level can learn to overcome these challenges and create better and easier image analyses.

10.
J Microsc ; 294(3): 420-439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747464

RESUMO

In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

11.
Nature ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587282
12.
Nature ; 560(7718): 325-330, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089904

RESUMO

Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Evolução Molecular , Variação Genética/genética , Instabilidade Genômica/genética , Transcrição Gênica/genética , Neoplasias da Mama/patologia , Proliferação de Células , Forma Celular , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Variação Genética/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Humanos , Células MCF-7 , Reprodutibilidade dos Testes
13.
Nat Methods ; 17(2): 241, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31969730

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Cytometry A ; 103(11): 915-926, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37789738

RESUMO

Quantitative microscopy is a powerful method for performing phenotypic screens from which image-based profiling can extract a wealth of information, termed profiles. These profiles can be used to elucidate the changes in cellular phenotypes across cell populations from different patient samples or following genetic or chemical perturbations. One such image-based profiling method is the Cell Painting assay, which provides morphological insight through the imaging of eight cellular compartments. Here, we examine the performance of the Cell Painting assay across multiple high-throughput microscope systems and find that all are compatible with this assay. Furthermore, we determine independently for each microscope system the best performing settings, providing those who wish to adopt this assay an ideal starting point for their own assays. We also explore the impact of microscopy setting changes in the Cell Painting assay and find that few dramatically reduce the quality of a Cell Painting profile, regardless of the microscope used.


Assuntos
Bioensaio , Microscopia , Humanos , Microscopia/métodos , Bioensaio/métodos
15.
J Microsc ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37727897

RESUMO

The 'Bridging Imaging Users to Imaging Analysis' survey was conducted in 2022 by the Center for Open Bioimage Analysis (COBA), BioImaging North America (BINA) and the Royal Microscopical Society Data Analysis in Imaging Section (RMS DAIM) to understand the needs of the imaging community. Through multichoice and open-ended questions, the survey inquired about demographics, image analysis experiences, future needs and suggestions on the role of tool developers and users. Participants of the survey were from diverse roles and domains of the life and physical sciences. To our knowledge, this is the first attempt to survey cross-community to bridge knowledge gaps between physical and life sciences imaging. Survey results indicate that respondents' overarching needs are documentation, detailed tutorials on the usage of image analysis tools, user-friendly intuitive software, and better solutions for segmentation, ideally in a format tailored to their specific use cases. The tool creators suggested the users familiarise themselves with the fundamentals of image analysis, provide constant feedback and report the issues faced during image analysis while the users would like more documentation and an emphasis on tool friendliness. Regardless of the computational experience, there is a strong preference for 'written tutorials' to acquire knowledge on image analysis. We also observed that the interest in having 'office hours' to get an expert opinion on their image analysis methods has increased over the years. The results also showed less-than-expected usage of online discussion forums in the imaging community for solving image analysis problems. Surprisingly, we also observed a decreased interest among the survey respondents in deep/machine learning despite the increasing adoption of artificial intelligence in biology. In addition, the community suggests the need for a common repository for the available image analysis tools and their applications. The opinions and suggestions of the community, released here in full, will help the image analysis tool creation and education communities to design and deliver the resources accordingly.

16.
J Microsc ; 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690102

RESUMO

CellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy. Here, we present an upgraded CellProfiler-plugins repository, an example of accessing containerised tools, improved documentation and added citation/reference tools to facilitate the use and contribution of the community.

17.
Nat Methods ; 16(12): 1247-1253, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636459

RESUMO

Segmenting the nuclei of cells in microscopy images is often the first step in the quantitative analysis of imaging data for biological and biomedical applications. Many bioimage analysis tools can segment nuclei in images but need to be selected and configured for every experiment. The 2018 Data Science Bowl attracted 3,891 teams worldwide to make the first attempt to build a segmentation method that could be applied to any two-dimensional light microscopy image of stained nuclei across experiments, with no human interaction. Top participants in the challenge succeeded in this task, developing deep-learning-based models that identified cell nuclei across many image types and experimental conditions without the need to manually adjust segmentation parameters. This represents an important step toward configuration-free bioimage analysis software tools.


Assuntos
Núcleo Celular/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Ciência de Dados , Humanos , Microscopia de Fluorescência/métodos
18.
Bioinformatics ; 37(21): 3992-3994, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34478488

RESUMO

SUMMARY: Image-based experiments can yield many thousands of individual measurements describing each object of interest, such as cells in microscopy screens. CellProfiler Analyst is a free, open-source software package designed for the exploration of quantitative image-derived data and the training of machine learning classifiers with an intuitive user interface. We have now released CellProfiler Analyst 3.0, which in addition to enhanced performance adds support for neural network classifiers, identifying rare object subsets, and direct transfer of objects of interest from visualization tools into the Classifier tool for use as training data. This release also increases interoperability with the recently released CellProfiler 4, making it easier for users to detect and measure particular classes of objects in their analyses. AVAILABILITY: CellProfiler Analyst binaries for Windows and MacOS are freely available for download at https://cellprofileranalyst.org/. Source code is implemented in Python 3 and is available at https://github.com/CellProfiler/CellProfiler-Analyst/. A sample dataset is available at https://cellprofileranalyst.org/examples, based on images freely available from the Broad Bioimage Benchmark Collection.


Assuntos
Aprendizado de Máquina , Software , Microscopia/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
19.
PLoS Biol ; 17(6): e3000340, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31216269

RESUMO

Forums and email lists play a major role in assisting scientists in using software. Previously, each open-source bioimaging software package had its own distinct forum or email list. Although each provided access to experts from various software teams, this fragmentation resulted in many scientists not knowing where to begin with their projects. Thus, the scientific imaging community lacked a central platform where solutions could be discussed in an open, software-independent manner. In response, we introduce the Scientific Community Image Forum, where users can pose software-related questions about digital image analysis, acquisition, and data management.


Assuntos
Diagnóstico por Imagem/tendências , Disseminação de Informação/métodos , Correio Eletrônico , Humanos , Processamento de Imagem Assistida por Computador , Internet , Software , Inquéritos e Questionários
20.
BMC Bioinformatics ; 22(1): 433, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507520

RESUMO

BACKGROUND: Imaging data contains a substantial amount of information which can be difficult to evaluate by eye. With the expansion of high throughput microscopy methodologies producing increasingly large datasets, automated and objective analysis of the resulting images is essential to effectively extract biological information from this data. CellProfiler is a free, open source image analysis program which enables researchers to generate modular pipelines with which to process microscopy images into interpretable measurements. RESULTS: Herein we describe CellProfiler 4, a new version of this software with expanded functionality. Based on user feedback, we have made several user interface refinements to improve the usability of the software. We introduced new modules to expand the capabilities of the software. We also evaluated performance and made targeted optimizations to reduce the time and cost associated with running common large-scale analysis pipelines. CONCLUSIONS: CellProfiler 4 provides significantly improved performance in complex workflows compared to previous versions. This release will ensure that researchers will have continued access to CellProfiler's powerful computational tools in the coming years.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Microscopia , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA