RESUMO
The blood-brain barrier and the blood-cerebrospinal fluid barrier separate the blood from brain tissue and cerebrospinal fluid. These brain barriers are important to maintain homeostasis and complex functions by protecting the brain from xenobiotics and harmful endogenous compounds. The disruption of brain barriers is a characteristic of neurologic diseases. Melatonin is a lipophilic hormone that is mainly produced by the pineal gland. The blood-brain barrier and the blood-cerebrospinal fluid barriers are melatonin-binding sites. Among the several melatonin actions, the most characteristic one is the regulation of sleep-wake cycles, melatonin has anti-inflammatory and antioxidant properties. Since brain barriers disruption can arise from inflammation and oxidative stress, knowing the influence of melatonin on the integrity of brain barriers is extremely important. Therefore, the objective of this review is to gather and discuss the available literature about the regulation of brain barriers by melatonin.
RESUMO
Glaucoma is a chronic optic neuropathy characterized by the progressive degeneration of retinal ganglion cells (RGC). These cells play a crucial role in transmitting visual and non-visual information to brain regions, including the suprachiasmatic nucleus (SCN), responsible for synchronizing biological rhythms. To understand how glaucoma affects circadian rhythm synchronization, we investigated potential changes in the molecular clock machinery in the SCN. We found that the progressive increase in intraocular pressure (IOP) negatively correlated with spontaneous locomotor activity (SLA). Transcriptome analysis revealed significant alterations in the SCN of glaucomatous mice, including downregulation of genes associated with circadian rhythms. In fact, we showed a loss of diurnal oscillation in the expression of vasoactive intestinal peptide (Vip), its receptor (Vipr2), and period 1 (Per1) in the SCN of glaucomatous mice. These findings were supported by the 7-h phase shift in the peak expression of arginine vasopressin (Avp) in the SCN of mice with glaucoma. Despite maintaining a 24-h period under both light/dark (LD) and constant dark (DD) conditions, glaucomatous mice exhibited altered SLA rhythms, characterized by decreased amplitude. Taken altogether, our findings provide evidence of how glaucoma affects the regulation of the central circadian clock and its consequence on the regulation of circadian rhythms.
Assuntos
Ritmo Circadiano , Glaucoma , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina , Núcleo Supraquiasmático , Animais , Camundongos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Masculino , Pressão Intraocular/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/genética , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Locomoção , Arginina Vasopressina/metabolismo , Arginina Vasopressina/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genéticaRESUMO
Several psychosocial, sleep/circadian, and cardiometabolic disorders have intricately interconnected pathologies involving melatonin disruption. Therefore, we hypothesize that melatonin could be a therapeutic target for treating potential comorbid diseases associated with this triad of psychosocial-sleep/circadian-cardiometabolic disorders. We investigated melatonin's target prediction and tractability for this triad of disorders. The melatonin's target prediction for the proposed psychosocial-sleep/circadian-cardiometabolic disorder triad was investigated using databases from Europe PMC, ChEMBL, Open Targets Genetics, Phenodigm, and PheWAS. The association scores for melatonin receptors MT1 and MT2 with this disorder triad were explored for evidence of target-disease predictions. The potential of melatonin as a tractable target in managing the disorder triad was investigated using supervised machine learning to identify melatonin activities in cardiovascular, neuronal, and metabolic assays at the cell, tissue, and organism levels in a curated ChEMBL database. Target-disease visualization was done by graphs created using "igraph" library-based scripts and displayed using the Gephi ForceAtlas algorithm. The combined Europe PMC (data type: text mining), ChEMBL (data type: drugs), Open Targets Genetics Portal (data type: genetic associations), PhenoDigm (data type: animal models), and PheWAS (data type: genetic associations) databases yielded types and varying levels of evidence for melatonin-disease triad correlations. Of the investigated databases, 235 association scores of melatonin receptors with the targeted diseases were greater than 0.2; to classify the evidence per disease class: 37% listed psychosocial disorders, 9% sleep/circadian disorders, and 54% cardiometabolic disorders. Using supervised machine learning, 546 cardiovascular, neuronal, or metabolic experimental assays with predicted or measured melatonin activity scores were identified in the ChEMBL curated database. Of 248 registered trials, 144 phase I to IV trials for melatonin or agonists have been completed, of which 33.3% were for psychosocial disorders, 59.7% were for sleep/circadian disorders, and 6.9% were for cardiometabolic disorders. Melatonin's druggability was evidenced by evaluating target prediction and tractability for the triad of psychosocial-sleep/circadian-cardiometabolic disorders. While melatonin research and development in sleep/circadian and psychosocial disorders is more advanced, as evidenced by melatonin association scores, substantial evidence on melatonin discovery in cardiovascular and metabolic disorders supports continued R&D in cardiometabolic disorders, as evidenced by melatonin activity scores. A multiplatform analysis provided an integrative assessment of the target-disease investigations that may justify further translational research.
Assuntos
Ritmo Circadiano , Melatonina , Síndrome Metabólica , Terapia de Alvo Molecular , Receptores de Melatonina , Transtornos do Sono-Vigília , Animais , Ritmo Circadiano/efeitos dos fármacos , Melatonina/metabolismo , Receptores de Melatonina/metabolismo , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/metabolismo , Síndrome Metabólica/tratamento farmacológicoRESUMO
Melatonin, an indolamine mainly released from the pineal gland, is associated with many biological functions, namely, the modulation of circadian and seasonal rhythms, sleep inducer, regulator of energy metabolism, antioxidant, and anticarcinogenic. Although several pieces of evidence also recognize the influence of melatonin in the reproductive physiology, the crosstalk between melatonin and sex hormones is not clear. Here, we review the effects of sex differences in the circulating levels of melatonin and update the current knowledge on the link between sex hormones and melatonin. Furthermore, we explore the effects of melatonin on gonadal steroidogenesis and hormonal control in females. The literature review shows that despite the strong evidence that sex differences impact on the circadian profiles of melatonin, reports are still considerably ambiguous, and these differences may arise from several factors, like the use of contraceptive pills, hormonal status, and sleep deprivation. Furthermore, there has been an inconclusive debate about the characteristics of the reciprocal relationship between melatonin and reproductive hormones. In this regard, there is evidence for the role of melatonin in gonadal steroidogenesis brought about by research that shows that melatonin affects multiple transduction pathways that modulate Sertoli cell physiology and consequently spermatogenesis, and also estrogen and progesterone production. From the outcome of our research, it is possible to conclude that understanding the correlation between melatonin and reproductive hormones is crucial for the correction of several complications occurring during pregnancy, like preeclampsia, and for the control of climacteric symptoms.
Assuntos
Hormônios Esteroides Gonadais/metabolismo , Gônadas/metabolismo , Melatonina/metabolismo , Menopausa/metabolismo , Placenta/metabolismo , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , GravidezRESUMO
BACKGROUD: Melatonin has anti-inflammatory and antioxidative actions at the mitochondrial level. This indole-containing molecule may protect ovarian grafts during the process of cryopreservation. Therefore, we aimed to determine whether melatonin pretreatment improves rat ovarian graft quality. METHODS: Twenty-six female rats were allocated to two study groups of thirteen animals each: 1) control group: ovaries cryopreserved using the standard protocol; and 2) melatonin group: ovaries cryopreserved in a medium with melatonin. Ten rats of each group were submitted to 24-h freezing, and whole ovaries autologous and avascular transplantation with retroperitoneal placement. After postoperative (PO) day 15, daily vaginal smears were obtained for estrous cycle characterization. Between PO days 30 and 35, the animals were euthanized and ovarian grafts were recovered for histological and immunohistochemical (Ki-67, cleaved caspase-3, TUNEL, von Willebrand factor, estrogen, and progesterone receptors) analyses. The ovaries of the three remaining rats from each group were studied immediately after thawing to assess the effects of cryopreservation. ANOVA and Tukey's tests were used and the rejection level of the null hypothesis was set at 0.05 or 5% (p < 0.05). RESULTS: Melatonin promoted faster restart of the estrous cycle and increased the expression of mature follicles, collagen type I, von Willebrand factor, Ki-67, and cleaved caspase-3 on corpora lutea and estrogen receptors in the ovaries as compared to control. There was a reduction in apoptosis by TUNEL on follicles, corpora lutea, and collagen type III. CONCLUSION: Based on the evaluated parameters, melatonin may promote the quality of ovarian grafts. Reproductive function enhancement should be further studied.
Assuntos
Criopreservação/métodos , Melatonina/farmacologia , Ovário , Animais , Meios de Cultura/farmacologia , Citoproteção/efeitos dos fármacos , Feminino , Ovário/efeitos dos fármacos , Ovário/transplante , Ratos , Ratos Wistar , Fatores de TempoRESUMO
Despite the evolving advances in clinical approaches to obesity and its inherent comorbidities, the therapeutic challenge persists. Among several pharmacological tools already investigated, recent studies suggest that melatonin supplementation could be an efficient therapeutic approach in the context of obesity. In the present review, we have amalgamated the evidence so far available on physiological effects of melatonin supplementation in obesity therapies, addressing its effects upon neuroendocrine systems, cardiometabolic biomarkers and body composition. Most studies herein appraised employed melatonin supplementation at dosages ranging from 1 to 20 mg/day, and most studies followed up participants for periods from 3 weeks to 12 months. Overall, it was observed that melatonin plays an important role in glycaemic homeostasis, in addition to modulation of white adipose tissue activity and lipid metabolism, and mitochondrial activity. Additionally, melatonin increases brown adipose tissue volume and activity, and its antioxidant and anti-inflammatory properties have also been demonstrated. There appears to be a role for melatonin in adiposity reduction; however, several questions remain unanswered, for example melatonin baseline levels in obesity, and whether any seeming hypomelatonaemia or melatonin irresponsiveness could be clarifying factors. Supplementation dosage studies and more thorough clinical trials are needed to ascertain not only the relevance of such findings but also the efficacy of melatonin supplementation.
Assuntos
Antioxidantes/administração & dosagem , Suplementos Nutricionais , Melatonina/administração & dosagem , Obesidade/tratamento farmacológico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glucose/metabolismo , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacosRESUMO
Shift workers experience chronic circadian misalignment, which can manifest itself in reduced melatonin production, and has been associated with metabolic disorders. In addition, chronotype modulates the effect of night shift work, with early types presenting greater circadian misalignment when working night shift as compared to late types. Melatonin supplementation has shown positive results reducing weight gain in animal models, but the effect of exogenous melatonin in humans on body weight in the context of shift work remains inconsistent. The aim of this study was thus to evaluate the effects of exogenous melatonin on circadian misalignment and body weight among overweight night shift workers, according to chronotype, under real-life conditions. We conducted a double-blind, randomized, placebo-controlled, crossover trial where melatonin (3 mg) or placebo was administered on non-night shift nights for 12 weeks in 27 female nurses (37.1 yo, ±5.9 yo; BMI 29.9 kg/m2 , ±3.3 kg/m2 ). Melatonin (or placebo) was only taken on nights when the participants did not work night shifts, that is, on nights when they slept (between night shifts and on days off). Composite Phase Deviations (CPD) of actigraphy-based mid-sleep timing were calculated to measure circadian misalignment. The analyses were performed for the whole group and by chronotype. We found approximately 20% reduction in circadian misalignment after exogenous melatonin administration considering all chronotypes. Moreover, melatonin supplementation in those who presented high circadian misalignment, as observed in early chronotypes, reduced body weight, BMI, waist circumference, and hip circumference, without any change in the participants' calorie intake or physical activity levels.
Assuntos
Melatonina , Jornada de Trabalho em Turnos , Peso Corporal , Ritmo Circadiano , Feminino , Humanos , Melatonina/metabolismo , SonoRESUMO
The endocrine pancreas of pregnant rats shows evident plasticity, which allows the morphological structures to return to the nonpregnant state right after delivery. Furthermore, it is well-known the role of melatonin in the maintenance of the endocrine pancreas and its tropism. Studies indicate increasing nocturnal serum concentrations of maternal melatonin during pregnancy in both humans and rodents. The present study investigated the role of melatonin on energy metabolism and in pancreatic function and remodeling during pregnancy and early lactation in rats. The results confirm that the absence of melatonin during pregnancy impairs glucose metabolism. In addition, there is a dysregulation in insulin secretion at various stages of the development of pregnancy and an apparent failure in the glucose-stimulated insulin secretion during the lactation period, evidencing the role of melatonin on the regulation of insulin secretion. This mechanism seems not to be dependent on the antioxidant effect of melatonin and probably dependent on MT2 receptors. We also observed changes in the mechanisms of death and cell proliferation at the end of pregnancy and beginning of lactation, crucial periods for pancreatic remodeling. The present observations strongly suggest that both functionality and remodeling of the endocrine pancreas are impaired in the absence of melatonin and its adequate replacement, mimicking the physiological increase seen during pregnancy, is able to reverse some of the damage observed. Thus, we conclude that pineal melatonin is important to metabolic adaptation to pregnancy and both the functionality of the beta cells and the remodeling of the pancreas during pregnancy and early lactation, ensuring the return to nonpregnancy conditions.
Assuntos
Células Secretoras de Insulina/metabolismo , Lactação/metabolismo , Melatonina/metabolismo , Animais , Feminino , Glucose/metabolismo , Secreção de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Gravidez , Ratos , Ratos WistarRESUMO
Pregnancy and lactation are reproductive processes that rely on physiological adaptations that should be timely and adequately triggered to guarantee both maternal and fetal health. Pineal melatonin is a hormone that presents daily and seasonal variations that synchronizes the organism's physiology to the different demands across time through its specific mechanisms and ways of action. The reproductive system is a notable target for melatonin as it actively participates on reproductive physiology and regulates the hypothalamus-pituitary-gonads axis, influencing gonadotropins and sexual hormones synthesis and release. For its antioxidant properties, melatonin is also vital for the oocytes and spermatozoa quality and viability, and for blastocyst development. Maternal pineal melatonin blood levels increase during pregnancy and triggers the maternal physiological alterations in energy metabolism both during pregnancy and lactation to cope with the energy demands of both periods and to promote adequate mammary gland development. Moreover, maternal melatonin freely crosses the placenta and is the only source of this hormone to the fetus. It importantly times the conceptus physiology and influences its development and programing of several functions that depend on neural and brain development, ultimately priming adult behavior and energy and glucose metabolism. The present review aims to explain the above listed melatonin functions, including the potential alterations observed in the progeny gestated under maternal chronodisruption and/or hypomelatoninemia.
Assuntos
Desenvolvimento Fetal/fisiologia , Lactação/fisiologia , Melatonina/metabolismo , Glândula Pineal/metabolismo , Animais , Feminino , Humanos , Glândulas Mamárias Humanas/embriologia , Sistema Nervoso/embriologia , GravidezRESUMO
Diabetes mellitus (DM) leads to complications, the majority of which are nephropathy, retinopathy, and neuropathy. Redox imbalance and inflammation are important components of the pathophysiology of these complications. Many studies have been conducted to find a specific treatment for these neural complications, and some of them have investigated the therapeutic potential of melatonin (MEL), an anti-inflammatory agent and powerful antioxidant. In the present article, we review studies published over the past 21 years on the therapeutic efficacy of MEL in the treatment of DM-induced neural complications. Reports suggest that there is a real prospect of using MEL as an adjuvant treatment for hypoglycemic agents. However, analysis shows that there is a wide range of approaches regarding the doses used, duration of treatment, and treatment times in relation to the temporal course of DM. This wide range hinders an objective analysis of advances and prospective vision of the paths to be followed for the unequivocal establishment of parameters to be used in an eventual therapeutic validation of MEL in neural complications of DM.
Assuntos
Complicações do Diabetes/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Melatonina/farmacologia , Animais , Diabetes Mellitus/patologia , HumanosRESUMO
PURPOSE: The pineal gland plays an important role in biological rhythms, circadian and circannual variations, which are key aspects in several headache disorders. OVERVIEW: Melatonin, the main pineal secreting hormone, has been extensively studied in primary and secondary headache disorders. Altered melatonin secretion occurs in many headache syndromes. Experimental data show pineal gland and melatonin both interfere in headache animal models, decreasing trigeminal activation. Melatonin has been shown to regulate CGRP and control its release. DISCUSSION: Melatonin has been used successfully as a treatment for migraine, cluster headaches and other headaches. There is a rationale for including the pineal gland as a relevant brain structure in the mechanisms of headache pathophysiology, and melatonin as a treatment option in primary headache.
Assuntos
Cefaleia/fisiopatologia , Glândula Pineal/fisiopatologia , Adulto , Animais , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Estudos de Casos e Controles , Criança , Ritmo Circadiano/fisiologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Método Duplo-Cego , Cefaleia/diagnóstico por imagem , Cefaleia/tratamento farmacológico , Cefaleia/patologia , Humanos , Melatonina/fisiologia , Melatonina/uso terapêutico , Oxirredução , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Glândula Pineal/metabolismo , Glândula Pineal/patologia , Receptores de Melatonina/agonistas , Receptores de Melatonina/fisiologia , Serotonina/metabolismo , Gânglio Cervical Superior/fisiopatologiaRESUMO
Recent studies have highlighted the involvement of melatonin in the regulation of energy homeostasis. In this study, we report that mice lacking melatonin receptor 1 (MT1 KO) gained more weight, had a higher cumulative food intake, and were more hyperphagic after fasting compared to controls (WT). In response to a leptin injection, MT1 KO mice showed a diminished reduction in body weight and food intake. To evaluate hypothalamic leptin signaling, we tested leptin-induced phosphorylation of the signal transducer and activator of transcription 3 (STAT3). Leptin failed to induce STAT3 phosphorylation in MT1 KO mice beyond levels observed in mice injected with phosphate-buffered saline (PBS). Furthermore, STAT3 phosphorylation within the arcuate nucleus (ARH) was decreased in MT1 KO mice. Leptin receptor mRNA levels in the hypothalamus of MT1 KO were significantly reduced (about 50%) compared to WT. This study shows that: (a) MT1 deficiency causes weight gain and increased food intake; (b) a lack of MT1 signaling induces leptin resistance; (c) leptin resistance is ARH region-specific; and (d) leptin resistance is likely due to down-regulation of the leptin receptor. Our data demonstrate that MT1 signaling is an important modulator of leptin signaling.
Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Leptina/metabolismo , Receptor MT1 de Melatonina/deficiência , Transdução de Sinais , Animais , Deleção de Genes , Leptina/genética , Masculino , Camundongos , Camundongos Knockout , Receptor MT1 de Melatonina/metabolismoRESUMO
Brown adipose tissue (BAT) influences energy balance through nonshivering thermogenesis, and its metabolism daily and seasonal variations are regulated by melatonin through partially known mechanisms. We evaluated the role of melatonin in BAT molecular machinery of male Control, pinealectomized (PINX), and melatonin-treated pinealectomized (PINX/Mel) adult rats. BAT was collected either every 3 hours over 24 hours or after cold or high-fat diet (HFD) acute exposure. HFD PINX animals presented decreased Dio2 expression, while HFD PINX/Mel animals showed increased Dio2, Ucp1, and Cidea expression. Cold-exposed PINX rats showed decreased Dio2 and Lhs expression, and melatonin treatment augmented Adrß3, Dio2, Ucp1, and Cidea expression. Daily profiles analyses showed altered Dio2, Lhs, Ucp1, Pgc1α, and Cidea gene and UCP1 protein expression in PINX animals, leading to altered rhythmicity under sub-thermoneutral conditions, which was partially restored by melatonin treatment. The same was observed for mitochondrial complexes I, II, and IV protein expression and enzyme activity. Melatonin absence seems to impair BAT responses to metabolic challenges, and melatonin replacement reverses this effect, with additional increase in the expression of crucial genes, suggesting that melatonin plays an important role in several key points of the thermogenic activation pathway, influencing both the rhythmic profile of the tissue and its ability to respond to metabolic challenges, which is crucial for the organism homeostasis.
Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Melatonina/farmacologia , Animais , Temperatura Baixa , Dieta Hiperlipídica , Masculino , Pinealectomia , Ratos , Ratos WistarRESUMO
In this review we summarized the actual clinical data for a cardioprotective therapeutic role of melatonin, listed melatonin and its agonists in different stages of development, and evaluated the melatonin cardiovascular target tractability and prediction using machine learning on ChEMBL. To date, most clinical trials investigating a cardioprotective therapeutic role of melatonin are in phase 2a. Selective melatonin receptor agonists Tasimelteon, Ramelteon, and combined melatonergic-serotonin Agomelatine, and other agonists with registered structures in CHEMBL were not yet investigated as cardioprotective or cardiovascular drugs. As drug-able for these therapeutic targets, melatonin receptor agonists have the benefit over melatonin of well-characterized pharmacologic profiles and extensive safety data. Recent reports of the X-ray crystal structures of MT1 and MT2 receptors shall lead to the development of highly selective melatonin receptor agonists. Predictive models using machine learning could help to identify cardiovascular targets for melatonin. Selecting ChEMBL scores > 4.5 in cardiovascular assays, and melatonin scores > 4, we obtained 284 records from 162 cardiovascular assays carried out with 80 molecules with predicted or measured melatonin activity. Melatonin activities (agonistic or antagonistic) found in these experimental cardiovascular assays and models include arrhythmias, coronary and large vessel contractility, and hypertension. Preclinical proof-of-concept and early clinical studies (phase 2a) suggest a cardioprotective benefit from melatonin in various heart diseases. However, larger phase 3 randomized interventional studies are necessary to establish melatonin and its agonists' actions as cardioprotective therapeutic agents.
Assuntos
Cardiotônicos/farmacologia , Melatonina/farmacologia , Animais , Cardiotônicos/uso terapêutico , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Aprendizado de Máquina , Melatonina/uso terapêutico , Estudo de Prova de Conceito , Pesquisa Translacional BiomédicaRESUMO
Melatonin is a neurohormone produced and secreted at night by pineal gland. Many effects of melatonin have already been described, for example: Activation of potassium channels in the suprachiasmatic nucleus and inhibition of excitability of a sub-population of neurons of the dorsal root ganglia (DRG). The DRG is described as a structure with several neuronal populations. One classification, based on the repolarizing phase of the action potential (AP), divides DRG neurons into two types: Without (N0) and with (Ninf) inflection on the repolarization phase of the action potential. We have previously demonstrated that melatonin inhibits excitability in N0 neurons, and in the present work, we aimed to investigate the melatonin effects on the other neurons (Ninf) of the DRG neuronal population. This investigation was done using sharp microelectrode technique in the current clamp mode. Melatonin (0.01-1000.0 nM) showed inhibitory activity on neuronal excitability, which can be observed by the blockade of the AP and by the increase in rheobase. However, we observed that, while some neurons were sensitive to melatonin effect on excitability (excitability melatonin sensitive-EMS), other neurons were not sensitive to melatonin effect on excitability (excitability melatonin not sensitive-EMNS). Concerning the passive electrophysiological properties of the neurons, melatonin caused a hyperpolarization of the resting membrane potential in both cell types. Regarding the input resistance (Rin), melatonin did not change this parameter in the EMS cells, but increased its values in the EMNS cells. Melatonin also altered several AP parameters in EMS cells, the most conspicuously changed was the (dV/dt)max of AP depolarization, which is in coherence with melatonin effects on excitability. Otherwise, in EMNS cells, melatonin (0.1-1000.0 nM) induced no alteration of (dV/dt)max of AP depolarization. Thus, taking these data together, and the data of previous publication on melatonin effect on N0 neurons shows that this substance has a greater pharmacological potency on Ninf neurons. We suggest that melatonin has important physiological function related to Ninf neurons and this is likely to bear a potential relevant therapeutic use, since Ninf neurons are related to nociception.
Assuntos
Potenciais de Ação , Depressores do Sistema Nervoso Central/farmacologia , Gânglios Espinais/efeitos dos fármacos , Melatonina/farmacologia , Neurônios/efeitos dos fármacos , Animais , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Masculino , Neurônios/fisiologia , Ratos , Ratos WistarRESUMO
Maternal melatonin provides photoperiodic information to the fetus and thus influences the regulation and timing of the offspring's internal rhythms and preparation for extra-uterine development. There is clinical evidence that melatonin deprivation of both mother and fetus during pregnancy, and of the neonate during lactation, results in negative long-term health outcomes. As a consequence, we hypothesized that the absence of maternal pineal melatonin might determine abnormal brain programming in the offspring, which would lead to long-lasting implications for behavior and brain function. To test our hypothesis, we investigated in rats the effects of maternal melatonin deprivation during gestation and lactation (MMD) to the offspring and the effects of its therapeutic replacement. The parameters evaluated were: (1) somatic, physical growth and neurobehavioral development of pups of both sexes; (2) hippocampal-dependent spatial learning and memory of the male offspring; (3) adult hippocampal neurogenesis of the male offspring. Our findings show that MMD significantly delayed male offspring's onset of fur development, pinna detachment, eyes opening, eruption of superior incisor teeth, testis descent and the time of maturation of palmar grasp, righting reflex, free-fall righting and walking. Conversely, female offspring neurodevelopment was not affected. Later on, male offspring show that MMD was able to disrupt both spatial reference and working memory in the Morris Water Maze paradigm and these deficits correlate with changes in the number of proliferative cells in the hippocampus. Importantly, all the observed impairments were reversed by maternal melatonin replacement therapy. In summary, we demonstrate that MMD delays the appearance of physical features, neurodevelopment and cognition in the male offspring, and points to putative public health implications for night shift working mothers.
Assuntos
Ritmo Circadiano/fisiologia , Cognição/fisiologia , Lactação/fisiologia , Melatonina/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal/fisiologia , Feminino , Crescimento e Desenvolvimento/fisiologia , Masculino , Memória/fisiologia , Mães , Neurogênese/fisiologia , Fotoperíodo , Glândula Pineal/metabolismo , Glândula Pineal/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Wistar , Aprendizagem Espacial/fisiologiaRESUMO
The cerebrospinal fluid melatonin is released from the pineal gland, directly into the third ventricle, or produced de novo in the brain from extrapineal melatonin sources leading to a melatonin concentration gradient in the cerebrospinal fluid. Despite the interest on this topic, the brain areas capable of producing melatonin are not yet clear. Bearing this in mind, we hypothesized that the choroid plexus (CP) could be one of these melatonin sources. We analyzed and confirmed the presence of the four enzymes required for melatonin synthesis in rat CP and demonstrated that arylalkylamine N-acetyltransferase shows a circadian expression in female and male rat CP. Specifically, this enzyme colocalizes with mitochondria in rat CP epithelial cells, an organelle known to be involved in melatonin function and synthesis. Then, we demonstrated that melatonin is synthesized by porcine CP explants, although without a circadian pattern. In conclusion, our data show that the CP is a local source of melatonin to the central nervous system, probably contributing to its high levels in the cerebrospinal fluid. We believe that in the CP, melatonin might be regulated by its endogenous clock machinery and by the hormonal background.
Assuntos
Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Plexo Corióideo/metabolismo , Melatonina/metabolismo , Animais , Líquido Cefalorraquidiano/metabolismo , Feminino , Masculino , RatosRESUMO
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
Assuntos
Antioxidantes/farmacologia , Hipertensão/prevenção & controle , Melatonina/farmacologia , Mitocôndrias/metabolismo , Animais , Humanos , Mitocôndrias/efeitos dos fármacosRESUMO
Clinical and experimental findings show that melatonin may be used as an adjuvant to the treatment of epilepsy-related complications by alleviates sleep disturbances, circadian alterations and attenuates seizures alone or in combination with AEDs. In addition, it has been observed that there is a circadian component on seizures, which cause changes in circadian system and in melatonin production. Nevertheless, the dynamic changes of the melatoninergic system, especially with regard to its membrane receptors (MT1 and MT2) in the natural course of TLE remain largely unknown. The aim of this study was to evaluate the 24-hour profile of MT1 and MT2 mRNA and protein expression in the hippocampus of rats submitted to the pilocarpine-induced epilepsy model analyzing the influence of the circadian rhythm in the expression pattern during the acute, silent, and chronic phases. Melatonin receptor MT1 and MT2 mRNA expression levels were increased in the hippocampus of rats few hours after SE, with MT1 returning to normal levels and MT2 reducing during the silent phase. During the chronic phase, mRNA expression levels of both receptors return to levels close to control, however, presenting a different daily profile, showing that there is a circadian change during the chronic phase. Also, during the acute and silent phase it was possible to verify MT1 label only in CA2 hippocampal region with an increased expression only in the dark period of the acute phase. The MT2 receptor was present in all hippocampal regions, however, it was reduced in the acute phase and it was found in astrocytes. In chronic animals, there is a reduction in the presence of both receptors especially in regions where there is a typical damage derived from epilepsy. Therefore, we conclude that SE induced by pilocarpine is able to change melatonin receptor MT1 and MT2 protein and mRNA expression levels in the hippocampus of rats few hours after SE as well as in silent and chronic phases.
Assuntos
Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Hipocampo/metabolismo , Pilocarpina/toxicidade , Receptor MT1 de Melatonina/biossíntese , Receptor MT2 de Melatonina/biossíntese , Animais , Epilepsia/genética , Expressão Gênica , Hipocampo/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genéticaRESUMO
INTRODUCTION: Melatonin has been studied in headache disorders. Amitriptyline is efficacious for migraine prevention, but its unfavourable side effect profile limits its use. METHODS: A randomised, double-blind, placebo-controlled study was carried out. Men and women, aged 18-65 years, with migraine with or without aura, experiencing 2-8 attacks per month, were enrolled. After a 4-week baseline phase, 196 participants were randomised to placebo, amitriptyline 25â mg or melatonin 3â mg, and 178 took a study medication and were followed for 3â months (12â weeks). The primary outcome was the number of migraine headache days per month at baseline versus last month. Secondary end points were responder rate, migraine intensity, duration and analgesic use. Tolerability was also compared between groups. RESULTS: Mean headache frequency reduction was 2.7 migraine headache days in the melatonin group, 2.2 for amitriptyline and 1.1 for placebo. Melatonin significantly reduced headache frequency compared with placebo (p=0.009), but not to amitriptyline (p=0.19). Melatonin was superior to amitriptyline in the percentage of patients with a greater than 50% reduction in migraine frequency. Melatonin was better tolerated than amitriptyline. Weight loss was found in the melatonin group, a slight weight gain in placebo and significantly for amitriptyline users. CONCLUSIONS: Melatonin 3â mg is better than placebo for migraine prevention, more tolerable than amitriptyline and as effective as amitriptyline 25â mg.