Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 129(10): 1308-1319, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28082445

RESUMO

p53-related protein kinase (TP53RK, also known as PRPK) is an upstream kinase that phosphorylates (serine residue Ser15) and mediates p53 activity. Here we show that TP53RK confers poor prognosis in multiple myeloma (MM) patients, and, conversely, that TP53RK knockdown inhibits p53 phosphorylation and triggers MM cell apoptosis, associated with downregulation of c-Myc and E2F-1-mediated upregulation of pro-apoptotic Bim. We further demonstrate that TP53RK downregulation also triggers growth inhibition in p53-deficient and p53-mutant MM cell lines and identify novel downstream targets of TP53RK including ribonucleotide reductase-1, telomerase reverse transcriptase, and cyclin-dependent kinase inhibitor 2C. Our previous studies showed that immunomodulatory drugs (IMiDs) downregulate p21 and trigger apoptosis in wild-type-p53 MM.1S cells, Importantly, we demonstrate by pull-down, nuclear magnetic resonance spectroscopy, differential scanning fluorimetry, and isothermal titration calorimetry that IMiDs bind and inhibit TP53RK, with biologic sequelae similar to TP53RK knockdown. Our studies therefore demonstrate that either genetic or pharmacological inhibition of TP53RK triggers MM cell apoptosis via both p53-Myc axis-dependent and axis-independent pathways, validating TP53RK as a novel therapeutic target in patients with poor-prognosis MM.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Apoptose/fisiologia , Western Blotting , Técnicas de Silenciamento de Genes , Humanos , Fatores Imunológicos/farmacologia , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Prognóstico , Transdução de Sinais/efeitos dos fármacos
3.
Br J Haematol ; 169(3): 423-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25709080

RESUMO

Proteasome inhibition induces the accumulation of aggregated misfolded/ubiquitinated proteins in the aggresome; conversely, histone deacetylase 6 (HDAC6) inhibition blocks aggresome formation. Although this rationale has been the basis of proteasome inhibitor (PI) and HDAC6 inhibitor combination studies, the role of disruption of aggresome formation by HDAC6 inhibition has not yet been studied in multiple myeloma (MM). The present study aimed to evaluate the impact of carfilzomib (CFZ) in combination with a selective HDAC6 inhibitor (ricolinostat) in MM cells with respect to the aggresome-proteolysis pathway. We observed that combination treatment of CFZ with ricolinostat triggered synergistic anti-MM effects, even in bortezomib-resistant cells. Immunofluorescent staining showed that CFZ increased the accumulation of ubiquitinated proteins and protein aggregates in the cytoplasm, as well as the engulfment of aggregated ubiquitinated proteins by autophagosomes, which was blocked by ricolinostat. Electron microscopy imaging showed increased autophagy triggered by CFZ, which was inhibited by the addition of ACY-1215. Finally, an in vivo mouse xenograft study confirmed a decrease in tumour volume, associated with apoptosis, following treatment with CFZ in combination with ricolinostat. Our results suggest that ricolinostat inhibits aggresome formation, caused by CFZ-induced inhibition of the proteasome pathway, resulting in enhanced apoptosis in MM cells.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Mieloma Múltiplo/metabolismo , Oligopeptídeos/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Xenoenxertos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Fagossomos/metabolismo , Inibidores de Proteassoma/farmacologia
4.
Br J Haematol ; 166(3): 401-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24761838

RESUMO

Everolimus, an oral mammalian target of rapamycin (mTOR) inhibitor, has been studied in multiple myeloma (MM) but lacks significant single agent activity. Based on preclinical studies showing synergistic activity of mTOR inhibitors with lenalidomide, we studied the combination of lenalidomide and everolimus in relapsed or refractory MM in a phase I clinical trial. We assessed patient samples using gene expression, Western blotting and immunohistochemistry to probe the mTOR pathway. Twenty-six patients were evaluable for toxicity. Dose-limiting toxicities included grade 4 neutropenia and thrombocytopenia. The maximum tolerated dose was lenalidomide 15 mg and everolimus 5 mg for 21 d with a 7 d rest period. Grade 3/4 adverse events included thrombocytopenia (35%) and neutropenia (42%). The overall response rate was 65% (1 complete response + 4 partial response + 10 minimal response). The median progression-free survival was 5·5 months and median overall survival was 29·5 months. Biomarker data demonstrated downregulation of phosphorylated p70S6K. Gene expression profiling suggested activation of mTOR in responders versus non-responders. The combination of lenalidomide and everolimus was well tolerated with predictable toxicities and showed responses in a heavily pretreated population. When confirmed with larger patient numbers, this analysis may guide patient selection for future clinical trials of mTOR inhibition in MM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Everolimo , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Lenalidomida , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/mortalidade , Recidiva , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados , Talidomida/administração & dosagem , Talidomida/análogos & derivados , Resultado do Tratamento
5.
Blood ; 119(11): 2579-89, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22262760

RESUMO

Histone deacetylase (HDAC) enzymatic activity has been linked to the transcription of DNA in cancers including multiple myeloma (MM). Therefore, HDAC inhibitors used alone and in combination are being actively studied as novel therapies in MM. In the present study, we investigated the preclinical activity of ACY-1215, an HDAC6-selective inhibitor, alone and in combination with bortezomib in MM. Low doses of ACY-1215 combined with bortezomib triggered synergistic anti-MM activity, resulting in protracted endoplasmic reticulum stress and apoptosis via activation of caspase-3, caspase-8, and caspase-9 and poly (ADP) ribosome polymerase. In vivo, the anti-MM activity of ACY-1215 in combination with bortezomib was confirmed using 2 different xenograft SCID mouse models: human MM injected subcutaneously (the plasmacytoma model) and luciferase-expressing human MM injected intravenously (the disseminated MM model). Tumor growth was significantly delayed and overall survival was significantly prolonged in animals treated with the combination therapy. Pharmacokinetic data showed peak plasma levels of ACY-1215 at 4 hours after treatment coincident with an increase in acetylated α-tubulin, a marker of HDAC6 inhibition, by immunohistochemistry and Western blot analysis. These studies provide preclinical rationale for acetylated α-tubulin use as a pharmacodynamic biomarker in future clinical trials.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/farmacocinética , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/farmacocinética , Plasmocitoma/tratamento farmacológico , Pirazinas/farmacologia , Pirimidinas/farmacologia , Pirimidinas/farmacocinética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Western Blotting , Bortezomib , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Imunofluorescência , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos SCID , Plasmocitoma/metabolismo , Plasmocitoma/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Blood ; 119(24): 5772-81, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22538852

RESUMO

Multiple myeloma (MM) cells are characterized by high protein synthesis resulting in chronic endoplasmic reticulum (ER) stress, which is adaptively managed by the unfolded protein response. Inositol-requiring enzyme 1α (IRE1α) is activated to splice X-box binding protein 1 (XBP1) mRNA, thereby increasing XBP1s protein, which in turn regulates genes responsible for protein folding and degradation during the unfolded protein response. In this study, we examined whether IRE1α-XBP1 pathway is a potential therapeutic target in MM using a small-molecule IRE1α endoribonuclease domain inhibitor MKC-3946. MKC-3946 triggered modest growth inhibition in MM cell lines, without toxicity in normal mononuclear cells. Importantly, it significantly enhanced cytotoxicity induced by bortezomib or 17-AAG, even in the presence of bone marrow stromal cells or exogenous IL-6. Both bortezomib and 17-AAG induced ER stress, evidenced by induction of XBP1s, which was blocked by MKC-3946. Apoptosis induced by these agents was enhanced by MKC-3946, associated with increased CHOP. Finally, MKC-3946 inhibited XBP1 splicing in a model of ER stress in vivo, associated with significant growth inhibition of MM cells. Taken together, our results demonstrate that blockade of XBP1 splicing by inhibition of IRE1α endoribonuclease domain is a potential therapeutic option in MM.


Assuntos
Proteínas de Ligação a DNA/genética , Endorribonucleases/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Splicing de RNA/efeitos dos fármacos , Fatores de Transcrição/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzoquinonas/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Interleucina-6/farmacologia , Lactamas Macrocíclicas/farmacologia , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteína 1 de Ligação a X-Box , eIF-2 Quinase/metabolismo
7.
Lancet Haematol ; 11(6): e415-e424, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677302

RESUMO

BACKGROUND: Isatuximab is a CD38 monoclonal antibody approved for relapsed or refractory multiple myeloma. We aimed to evaluate the addition of isatuximab to weekly carfilzomib (K), lenalidomide (R), and dexamethasone (d; Isa-KRd) in transplant-eligible patients with newly diagnosed multiple myeloma and stratified maintenance by cytogenetic risk. METHODS: This single-arm phase 2 trial was done at three cancer centres (two hospitals and a cancer institute) in Boston (MA, USA). Eligible patients were aged at least 18 years and had transplant-eligible newly diagnosed multiple myeloma and an ECOG performance status of 2 or less. Patients received four 28-day cycles of Isa-KRd, including isatuximab 10 mg/kg intravenously weekly for 8 weeks, then every other week for 16 weeks, and every 4 weeks thereafter; carfilzomib 56 mg/m2 intravenously on days 1, 8, and 15 (20 mg/m2 for cycle 1 day 1); lenalidomide 25 mg orally on days 1-21; and dexamethasone 20 mg orally the day of and day after all doses of carfilzomib and isatuximab. Consolidation involved either upfront haematopoietic stem-cell transplantation (HSCT) with two additional cycles or deferred HSCT with four additional cycles of treatment. The primary endpoint was complete response after four cycles of treatment. Analyses were by intention-to-treat. All patients who received one dose of study drug were included in the safety analyses. This study was registered at ClinicalTrials.gov, NCT04430894, and has completed enrolment. FINDINGS: Between July 31, 2020 and Jan 31, 2022, 50 patients were enrolled. Median age was 59 years (range 40-70), 54% (27 of 50 patients) were male, and 44 (88%) were White. 46% (23 of 50) of patients had high-risk cytogenetics. Median follow-up was 26 months (IQR 20·7-30·1). 32% (16 of 50 patients) achieved a complete response after four cycles. The overall response rate (ORR) was 90% (45 patients) and 78% (39 patients) achieved a very good partial response (VGPR) or better. After completion of consolidation, 58% (29 patients) achieved a complete response; the ORR was 90% (45 patients) and 86% (43 patients) achieved a VGPR or better. The most common grade 3 or 4 side-effects (≥two patients) included neutropenia (13 [26%] of 50 patients), elevated alanine aminotransferase (six [12%] patients), fatigue (three [6%] patients), thrombocytopenia (three [6%] patients), acute kidney injury (two [4%] patients), anaemia (two [4%] patients), and febrile neutropenia (two [4%] patients). Grade 1-2 infusion-related reactions were seen in 20% (ten patients), with none grade 3. Grade 1-2 hypertension was seen in 14% (seven patients) with one grade 3 (one [2%] patient). There were two deaths assessed as unrelated to treatment. INTERPRETATION: Although the study did not achieve the prespecified complete response threshold, Isa-KRd induced deep and durable responses in transplant-eligible patients with newly diagnosed multiple myeloma. The treatment proved safe and consistent with similar regimens in this setting. FUNDING: Amgen, Sanofi, and Adaptive.


Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Dexametasona , Lenalidomida , Mieloma Múltiplo , Oligopeptídeos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/terapia , Dexametasona/uso terapêutico , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Masculino , Lenalidomida/uso terapêutico , Lenalidomida/administração & dosagem , Lenalidomida/efeitos adversos , Feminino , Pessoa de Meia-Idade , Oligopeptídeos/uso terapêutico , Oligopeptídeos/administração & dosagem , Oligopeptídeos/efeitos adversos , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Adulto
8.
Proc Natl Acad Sci U S A ; 107(11): 5124-9, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20194748

RESUMO

Understanding the pathogenesis of cancer-related bone disease is crucial to the discovery of new therapies. Here we identify activin A, a TGF-beta family member, as a therapeutically amenable target exploited by multiple myeloma (MM) to alter its microenvironmental niche favoring osteolysis. Increased bone marrow plasma activin A levels were found in MM patients with osteolytic disease. MM cell engagement of marrow stromal cells enhanced activin A secretion via adhesion-mediated JNK activation. Activin A, in turn, inhibited osteoblast differentiation via SMAD2-dependent distal-less homeobox-5 down-regulation. Targeting activin A by a soluble decoy receptor reversed osteoblast inhibition, ameliorated MM bone disease, and inhibited tumor growth in an in vivo humanized MM model, setting the stage for testing in human clinical trials.


Assuntos
Ativinas/metabolismo , Mieloma Múltiplo/complicações , Osteólise/etiologia , Ativinas/antagonistas & inibidores , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Regulação para Baixo , Ativação Enzimática , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Osteoblastos/patologia , Osteólise/patologia , Receptores de Superfície Celular/metabolismo , Proteína Smad2/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
9.
Blood ; 116(17): 3227-37, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20651070

RESUMO

The bone marrow (BM) microenvironment consists of extracellular-matrix and the cellular compartment including immune cells. Multiple myeloma (MM) cell and BM accessory cell interaction promotes MM survival via both cell-cell contact and cytokines. Immunomodulatory agents (IMiDs) target not only MM cells, but also MM cell-immune cell interactions and cytokine signaling. Here we examined the in vitro effects of IMiDs on cytokine signaling triggered by interaction of effector cells with MM cells and BM stroma cells. IMiDs diminished interleukin-2, interferonγ, and IL-6 regulator suppressor of cytokine signaling (SOCS)1 expression in immune (CD4T, CD8T, natural-killer T, natural-killer) cells from both BM and PB of MM patients. In addition, coculture of MM cells with healthy PBMCs induced SOCS1 expression in effector cells; conversely, treatment with IMiDs down-regulated the SOCS1 expression. SOCS1 negatively regulates IL-6 signaling and is silenced by hypermethylation in MM cells. To define the mechanism of inhibitory-cytokine signaling in effector cells and MM cells, we next analyzed the interaction of immune cells with MM cells that were epigenetically modified to re-express SOCS1; IMiDs induced more potent CTL responses against SOCS1 re-expressing-MM cells than unmodified MM cells. These data therefore demonstrate that modulation of SOCS1 may enhance immune response and efficacy of IMiDs in MM.


Assuntos
Antineoplásicos/imunologia , Células da Medula Óssea/efeitos dos fármacos , Fatores Imunológicos/imunologia , Mieloma Múltiplo/imunologia , Linfócitos T/efeitos dos fármacos , Talidomida/análogos & derivados , Células da Medula Óssea/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Epigênese Genética , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Lenalidomida , Mieloma Múltiplo/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/imunologia , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/imunologia , Linfócitos T/imunologia , Talidomida/imunologia
10.
Blood ; 115(25): 5202-13, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20382844

RESUMO

Aurora-A is a mitotic kinase that regulates mitotic spindle formation and segregation. In multiple myeloma (MM), high Aurora-A gene expression has been correlated with centrosome amplification and proliferation; thus, inhibition of Aurora-A in MM may prove to be therapeutically beneficial. Here we assess the in vitro and in vivo anti-MM activity of MLN8237, a small-molecule Aurora-A kinase inhibitor. Treatment of cultured MM cells with MLN8237 results in mitotic spindle abnormalities, mitotic accumulation, as well as inhibition of cell proliferation through apoptosis and senescence. In addition, MLN8237 up-regulates p53 and tumor suppressor genes p21 and p27. Combining MLN8237 with dexamethasone, doxorubicin, or bortezomib induces synergistic/additive anti-MM activity in vitro. In vivo anti-MM activity of MLN8237 was confirmed using a xenograft-murine model of human-MM. Tumor burden was significantly reduced (P = .007) and overall survival was significantly increased (P < .005) in animals treated with 30 mg/kg MLN8237 for 21 days. Induction of apoptosis and cell death by MLN8237 were confirmed in tumor cells excised from treated animals by TdT-mediated dUTP nick end labeling assay. MLN8237 is currently in phase 1 and phase 2 clinical trials in patients with advanced malignancies, and our preclinical results suggest that MLN8237 may be a promising novel targeted therapy in MM.


Assuntos
Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Aurora Quinase A , Aurora Quinases , Azepinas/uso terapêutico , Ácidos Borônicos/farmacologia , Bortezomib , Ciclo Celular , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Dexametasona/farmacologia , Doxorrubicina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos SCID , Mieloma Múltiplo/enzimologia , Transplante de Neoplasias , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/biossíntese , Pirazinas/farmacologia , Pirimidinas/uso terapêutico , Fuso Acromático/metabolismo , Fatores de Tempo , Transplante Heterólogo , Proteínas Supressoras de Tumor/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Blood Adv ; 5(18): 3511-3514, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34428278

RESUMO

Multiple myeloma (MM) is a heterogeneous disease that has an increased incidence in African Americans (AAs). We previously observed that, with equal access to health care, younger AA patients (age < 65 years) have superior overall survival (OS) compared with younger White patients. Because MM prognosis is influenced by 17p deletion (del17p), we investigated racial differences in its occurrence and impact in a large cohort of MM patients from the Veterans Affairs (VA) system. Among 2243 VA patients with MM for whom del17p data were available, del17p was present in 8.83% of all patients, with a significantly lower prevalence in AAs (5.56%) compared with Whites (10.52%; P < .001). The difference was even more pronounced among younger AAs (<65 years) vs younger Whites (4.34% vs 9.8%, respectively; P = .004). However, we did not observe any significant difference in survival between AA and White patients with del17p, regardless of age category, suggesting that del17p carries a poor prognosis across race and age. Interestingly, among patients without del17p, we still noted a significantly superior OS in younger AAs compared with younger Whites (7.75 vs 5.10 years; P = .042). Our study shows a lower incidence of del17p in AAs but suggests that the survival advantage for younger AAs is primarily due to factors other than del17p.


Assuntos
Negro ou Afro-Americano , Mieloma Múltiplo , Idoso , Estudos de Coortes , Humanos , Mieloma Múltiplo/genética , Prognóstico , População Branca
12.
Cancers (Basel) ; 13(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207459

RESUMO

Electronic frailty indices based on data from administrative claims and electronic health records can be used to estimate frailty in large populations of older adults with cancer where direct frailty measures are lacking. The objective of this study was to use the electronic Veterans Affairs Frailty Index (VA-FI-10)-developed and validated to measure frailty in the national United States (US) VA Healthcare System-to estimate the prevalence and impact of frailty in older US veterans newly treated for multiple myeloma (MM) with contemporary therapies. We designed a retrospective cohort study of 4924 transplant-ineligible veterans aged ≥ 65 years initiating MM therapy within VA from 2004 to 2017. Initial MM therapy was measured using inpatient and outpatient treatment codes from pharmacy data in the VA Corporate Data Warehouse. In total, 3477 veterans (70.6%) were classified as frail (VA-FI-10 > 0.2), with 1510 (30.7%) mildly frail (VA-FI-10 > 0.2-0.3), 1105 (22.4%) moderately frail (VA-FI-10 > 0.3-0.4), and 862 (17.5%) severely frail (VA-FI-10 > 0.4). Survival and time to hospitalization decreased with increasing VA-FI-10 severity (log-rank p-value < 0.001); the VA-FI-10 predicted mortality and hospitalizations independently of age, sociodemographic variables, and measures of disease risk. Varying data sources and assessment periods reclassified frailty severity for a substantial portion of veterans but did not substantially affect VA-FI-10's association with mortality. Our study supports use of the VA-FI-10 in future research involving older veterans with MM and provides insights into its potential use in identifying frailty in clinical practice.

13.
J Natl Cancer Inst ; 113(8): 1084-1093, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33523236

RESUMO

BACKGROUND: Traditional count-based measures of comorbidity are unlikely to capture the complexity of multiple chronic conditions (multimorbidity) in older adults with cancer. We aimed to define patterns of multimorbidity and their impact in older United States veterans with multiple myeloma (MM). METHODS: We measured 66 chronic conditions in 5076 veterans aged 65 years and older newly treated for MM in the national Veterans Affairs health-care system from 2004 to 2017. Latent class analysis was used to identify patterns of multimorbidity among these conditions. These patterns were then assessed for their association with overall survival, our primary outcome. Secondary outcomes included emergency department visits and hospitalizations. RESULTS: Five patterns of multimorbidity emerged from the latent class analysis, and survival varied across these patterns (log-rank 2-sided P < .001). Older veterans with cardiovascular and metabolic disease (30.9%, hazard ratio [HR] = 1.33, 95% confidence interval [CI] = 1.21 to 1.45), psychiatric and substance use disorders (9.7%, HR = 1.58, 95% CI = 1.39 to 1.79), chronic lung disease (15.9%, HR = 1.69, 95% CI = 1.53 to 1.87), and multisystem impairment (13.8%, HR = 2.25, 95% CI = 2.03 to 2.50) had higher mortality compared with veterans with minimal comorbidity (29.7%, reference). Associations with mortality were maintained after adjustment for sociodemographic variables, measures of disease risk, and the count-based Charlson Comorbidity Index. Multimorbidity patterns were also associated with emergency department visits and hospitalizations. CONCLUSIONS: Our findings demonstrate the need to move beyond count-based measures of comorbidity and consider cancer in the context of multiple chronic conditions.


Assuntos
Múltiplas Afecções Crônicas , Mieloma Múltiplo , Veteranos , Idoso , Comorbidade , Humanos , Multimorbidade , Mieloma Múltiplo/epidemiologia , Mieloma Múltiplo/terapia , Estados Unidos/epidemiologia
14.
Future Oncol ; 6(3): 407-18, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20222797

RESUMO

The past decade has witnessed a dramatic improvement in the therapeutic options in multiple myeloma (MM). Several novel biologically targeted agents are in clinical use and have resulted in improved outcomes. However, the disease remains incurable, underscoring the need for continued efforts towards understanding MM biology, better risk stratification and exploitation of novel therapeutic approaches. Novel agents that target tumor and stromal compartments can be categorized as those that target protein dynamics (e.g., heat shock protein 90 and the ubiquitin-proteasome system), intracellular signaling kinases (e.g., JAK/STAT, PI3k/Akt/mTOR and MAPK pathways), cell cycle molecular machinery (e.g., cyclin-dependent kinase inhibitor and Aurora kinase inhibitors), membrane-bound receptors (e.g., IGF-1, VEGF and CD40), epigenetic modulators (e.g., DNA methyltransferase and histone deacetylase), tumor vasculature and microenvironment (e.g., angiogenesis and integrins) and agents modulating anti-MM immune responses. This article focuses on a series of new therapeutic targets that have shown promising preclinical results and early evidence of anti-MM activity in clinical studies, either alone or in combination with other conventional or novel anti-MM treatments.


Assuntos
Antineoplásicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Animais , Humanos
15.
Br J Haematol ; 141(5): 659-71, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18410446

RESUMO

This study investigated the biological significance of the inhibition of fatty acid synthase (FAS) in multiple myeloma (MM) using the small molecule inhibitor Cerulenin. Cerulenin triggered growth inhibition in both MM cell lines and MM patient cells, and overcame the survival and growth advantages conferred by interleukin-6, insulin-like growth factor-1, and bone marrow stromal cells. It induced apoptosis in MM cell lines with only modest activation of caspase -8, -9, -3 and PARP; moreover, the pan-caspase inhibitor Z-VAD-FMK did not inhibit Cerulenin-induced apoptosis and cell death. In addition, treatment of MM cells with Cerulenin primarily up-regulated apoptosis-inducing factor/endonuclease G, mediators of caspase-independent apoptosis. Importantly, Cerulenin induced endoplasmic reticulum stress response via up-regulation of the Grp78/IRE1alpha/JNK pathway. Although the C-Jun-NH(2)-terminal kinase (JNK) inhibitor SP600215 blocked Cerulenin-induced cytotoxicity, it did not inhibit apoptosis and caspase cleavage. Furthermore, Cerulenin showed synergistic cytotoxic effects with various agents including Bortezomib, Melphalan and Doxorubicin. Our results therefore indicate that inhibition of FAS by Cerulenin primarily triggered caspase-independent apoptosis and JNK-dependent cytotoxicity in MM cells. This report demonstrated that inhibition of FAS has anti-tumour activity against MM cells, suggesting that it represents a novel therapeutic target in MM.


Assuntos
Cerulenina/uso terapêutico , Ácido Graxo Sintases/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Caspase 3/biossíntese , Caspase 8/biossíntese , Caspase 9/biossíntese , Linhagem Celular Tumoral , Cerulenina/farmacologia , Sistemas de Liberação de Medicamentos , Avaliação de Medicamentos , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase 4/metabolismo , Mieloma Múltiplo/enzimologia , Transdução de Sinais , Células Tumorais Cultivadas , Receptor fas/metabolismo
16.
J Bone Miner Res ; 31(6): 1225-34, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26763740

RESUMO

Sclerostin is a potent inhibitor of osteoblastogenesis. Interestingly, newly diagnosed multiple myeloma (MM) patients have high levels of circulating sclerostin that correlate with disease stage and fractures. However, the source and impact of sclerostin in MM remains to be defined. Our goal was to determine the role of sclerostin in the biology of MM and its bone microenvironment as well as investigate the effect of targeting sclerostin with a neutralizing antibody (scl-Ab) in MM bone disease. Here we confirm increased sclerostin levels in MM compared with precursor disease states like monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM. Furthermore, we found that a humanized MM xenograft mouse model bearing human MM cells (NOD-SCID.CB17 male mice injected intravenously with 2.5 million of MM1.S-Luc-GFP cells) demonstrated significantly higher concentrations of mouse-derived sclerostin, suggesting a microenvironmental source of sclerostin. Associated with the increased sclerostin levels, activated ß-catenin expression levels were lower than normal in MM mouse bone marrow. Importantly, a high-affinity grade scl-Ab reversed osteolytic bone disease in this animal model. Because scl-Ab did not demonstrate significant in vitro anti-MM activity, we combined it with the proteasome inhibitor carfilzomib. Our data demonstrated that this combination therapy significantly inhibited tumor burden and improved bone disease in our in vivo MM mouse model. In agreement with our in vivo data, sclerostin expression was noted in marrow stromal cells and osteoblasts of MM patient bone marrow samples. Moreover, MM cells stimulated sclerostin expression in immature osteoblasts while inhibiting osteoblast differentiation in vitro. This was in part regulated by Dkk-1 secreted by MM cells and is a potential mechanism contributing to the osteoblast dysfunction noted in MM. Our data confirm the role of sclerostin as a potential therapeutic target in MM bone disease and provides the rationale for studying scl-Ab combined with proteasome inhibitors in MM. © 2016 American Society for Bone and Mineral Research.


Assuntos
Doenças Ósseas/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Osteoblastos/metabolismo , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal , Animais , Doenças Ósseas/genética , Doenças Ósseas/patologia , Feminino , Glicoproteínas/genética , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Osteoblastos/patologia
18.
J Bone Miner Res ; 30(3): 465-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25407518

RESUMO

Decorin is a small, leucine-rich proteoglycan found in the extracellular matrix of various connective tissues with potential effective tumor suppressive properties. Recent data suggest low levels of decorin in multiple myeloma (MM) patients compared to healthy volunteers, as well as in patients with osteolytic bone lesions compared to non-osteolytic lesions. In the present report, we investigated the role of decorin in the MM microenvironment or niche. Our data suggests that decorin is produced by osteoblasts (OBs) but not by MM cells. Furthermore, MM cells decrease OB-induced decorin secretion and this effect is mediated by CCL3. Importantly, neutralizing CCL3 from MM cells restores decorin levels in OBs as does proteasome inhibitors such as carfilzomib. These findings indicate that decorin may indirectly act as an antagonist to MM cell survival and that the interplay between MM and decorin may be an important target to explore in manipulating the tumor niche to inhibit tumorigenesis.


Assuntos
Medula Óssea/patologia , Decorina/fisiologia , Mieloma Múltiplo/patologia , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
19.
PLoS One ; 10(12): e0143847, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26630652

RESUMO

Heat shock protein (HSP)90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/ß inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/ß inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM.


Assuntos
Genes ras , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mieloma Múltiplo/patologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Benzimidazóis/farmacologia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/farmacologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Oximas/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Pirazóis/farmacologia
20.
Cell Rep ; 10(5): 755-770, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660025

RESUMO

Novel therapeutic approaches are urgently required for multiple myeloma (MM). We used a phenotypic screening approach using co-cultures of MM cells with bone marrow stromal cells to identify compounds that overcome stromal resistance. One such compound, BRD9876, displayed selectivity over normal hematopoietic progenitors and was discovered to be an unusual ATP non-competitive kinesin-5 (Eg5) inhibitor. A novel mutation caused resistance, suggesting a binding site distinct from known Eg5 inhibitors, and BRD9876 inhibited only microtubule-bound Eg5. Eg5 phosphorylation, which increases microtubule binding, uniquely enhanced BRD9876 activity. MM cells have greater phosphorylated Eg5 than hematopoietic cells, consistent with increased vulnerability specifically to BRD9876's mode of action. Thus, differences in Eg5-microtubule binding between malignant and normal blood cells may be exploited to treat multiple myeloma. Additional steps are required for further therapeutic development, but our results indicate that unbiased chemical biology approaches can identify therapeutic strategies unanticipated by prior knowledge of protein targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA